• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How molecular scissors cut in the right place

Bioengineer by Bioengineer
September 28, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group at Uppsala University has found out how CRISPR-Cas9 — also known as 'molecular scissors' — can search the genome for a specific DNA sequence. Cas9 already has many applications in biotechnology and is also expected to revolutionise medicine. The new research findings show how Cas9 can be improved to make the molecular scissors faster and more reliable. The study is being published in Science.

In less than a decade, CRISPR-Cas9 has revolutionised biological research. Cas9 makes it possible, for specific purposes, to correct or modify ('edit') essentially any DNA sequence. The hope is that the genetic scissors will also enable genetic diseases to be cured and prevented.

The exciting aspect of Cas9 is that the molecule can be programmed with a piece of artificial genetic code, which can then be made to seek out the corresponding sequence in the genome. A research group at Uppsala University has now discovered how Cas9 finds the right sequence.

'Most proteins that search DNA code can recognise one specific sequence merely by sensing the outside of the DNA double helix. Cas9 can search for an arbitrary code, but to determine whether it is in the right place the molecule has to open the double DNA helix and compare the sequence with the programmed code. The incredible thing is that it can still search the entire genome without using any energy,' says Johan Elf, who is in charge of the study.

The researchers have developed two new methods to measure how long Cas9 takes to find its target sequence. The first method showed that it takes as long as six hours for Cas9 to search a bacterium, i.e. through four million base pairs. This somewhat unlikely result was also verifiable by means of the second, independent technique. The time found also tallies with the number of milliseconds Cas9 has available for testing every position, which the researchers were able to measure by following labelled Cas9 molecules in real time.

'The results show that the price Cas9 pays for its flexibility is time. To find the target faster, more Cas9 molecules searching for the same DNA sequence are needed,' says Johan Elf.

The very high concentrations of Cas9 that are necessary for finding the right sequence within a reasonable time frame can pose severe problems for the cells that scientists try to alternate. But since the nature of the search process is now understood, an important clue as to how the system can be improved has been found. By sacrificing a portion of Cas9's flexibility, it would be possible to design genetic scissors that are still sufficiently versatile to edit various genes but simultaneously fast enough to be medically usable.

'The results have given us clues on how we might achieve that kind of solution,' Elf says. 'The key is in what are known as the "PAM sequences", which determine where and how often Cas9 opens up the DNA double helix. Molecular scissors that do not need to open the helix as many times to find their target are not only faster but would also reduce the risk of side-effects."

###

Media Contact

Johan Elf
[email protected]
46-184-714-678
@UU_University

http://www.uu.se

Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

October 3, 2025
Microscopic Sugars in the Brain Alter Emotional Pathways, Driving Depression

Microscopic Sugars in the Brain Alter Emotional Pathways, Driving Depression

October 3, 2025

Plant Mobile Domain Proteins Resist Polycomb Gene Silencing

October 3, 2025

Unraveling Heterosis in Eucalyptus Growth Through Transcriptomics

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance CO₂ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

AI Advances Enhance Sustainable Recycling of Livestock Waste

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.