• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

How lung tissue forms immune cell hubs in times of need

Bioengineer by Bioengineer
February 5, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings hold promise for broader immunization against flu

IMAGE

Credit: Dr Alice Denton, Babraham Institute


Key points:

  • Research uncovers how lung tissue is remodelled to support an immune response to influenza.
  • Understanding how specialised immune structures are formed may support the development of vaccines that provide broader protection, for example in the development of novel influenza vaccinations that provide cross-strain protection.
  • Findings are also relevant to understanding a variety of autoimmune diseases and hold promise for the development of new therapeutic strategies.

Immunology researchers at the Babraham Institute have discovered how lung tissue in mice is remodelled in response to infection with influenza in order to support an immune system response. A key result of this tissue remodelling is the production of antibodies with the ability to provide protection against a wider range of related viruses. If the research findings can be applied to the development of the seasonal influenza vaccination, the result would be more robust protection against multiple influenza strains, not just the strain for which the vaccine is optimised against based on global epidemiology predictions. The research is published in the Journal of Experimental Medicine today.

“In the same way that crisis centres are created on the ground in the midst of a humanitarian effort, the immune system can commandeer non-immune-related tissues to create something that resembles an immune cell hub where white blood cells collaborate to generate a co-ordinated response to an invading pathogen.” explains Dr Alice Denton, BBSRC Future Leader Fellow at the Babraham Institute.

These transient microenvironments, called germinal centres, are vital for effective immune responses and the generation of our immune ‘memory’ which provides protection against subsequent infections. Despite their importance in health and disease, how germinal centres are formed in the lungs after infection is unknown.

The researchers found that germinal centre formation in the lungs is initiated via cascade of events, whereby a chemical message (type I interferon) produced by lung cells in response to infection triggers the production of a chemical attractant – a ‘come here’ flag to the immune system. In response to this signal, B cells (the immune cells that produce antibodies) are recruited to the lungs and initiate the formation of germinal centres. These lung-based germinal centres produce a different repertoire of B cells; ones that produce more broadly reactive antibodies providing cross-protection across different influenza strains.

These findings indicate that understanding the compounds which stimulate a type I interferon response may be useful as vaccine additions to drive cross-protective antibody production in the lungs.

“One important function of germinal centres when responding to infection is that they support the creation of cross-reactive antibodies that can confer wider protection,” says Dr Michelle Linterman, research group leader at the Babraham Institute. “Being able to exploit this would be extremely beneficial in the case of the annual influenza vaccination where the vaccination is developed against the likely prevalent strain. In the case of vaccinating against one type of influenza virus, wider protection against other types of influenza strains would reduce infections and thereby improve health.”

The research findings are also relevant to understanding immune responses that occur in non-lymphoid tissues and are known to be associated with autoimmune disease, infection, Chronic Obstructive Pulmonary Disease and cancer.

“Understanding how these ectopic immune structures form may enable the development of new therapeutics to specifically target these responses,” concludes Dr Denton. “In autoimmune disease, this has the potential to reduce the detrimental immune responses that are targeted against the body’s own tissue.”

###

Media Contact
Louisa Wood
[email protected]
44-012-234-96230

Original Source

https://www.babraham.ac.uk/news/2019/02/how-lung-tissue-forms-immune-cell-hubs-in-times-of-need

Related Journal Article

http://dx.doi.org/10.1084/jem.20181216

Tags: BiologyCell BiologyImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound Insights on Hip Dysplasia in Infants

Advanced Quinone Nanocomposites Boost Zinc-Ion Batteries

Discontinuing Kidney Treatment Yields Major Benefits for Patients and the NHS

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.