• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How intensive agriculture turned a wild plant into a pervasive weed

Bioengineer by Bioengineer
December 8, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research in Science is showing how the rise of modern agriculture has turned a North American native plant, common waterhemp, into a problematic agricultural weed. 

Waterhemp in corn field

Credit: Julia Kreiner, University of British Columbia.

New research in Science is showing how the rise of modern agriculture has turned a North American native plant, common waterhemp, into a problematic agricultural weed. 

An international team led by researchers at the University of British Columbia (UBC) compared 187 waterhemp samples from modern farms and neighbouring wetlands with more than 100 historical samples dating as far back as 1820 that had been stored in museums across North America. Much like the sequencing of ancient human and neanderthal remains has resolved key mysteries about human history, studying the plant’s genetic makeup over the last two centuries allowed the researchers to watch evolution in action across changing environments.  

“The genetic variants that help the plant do well in modern agricultural settings have risen to high frequencies remarkably quickly since agricultural intensification in the 1960s,” said first author Dr. Julia Kreiner, a postdoctoral researcher in UBC’s Department of Botany. 

The researchers discovered hundreds of genes across the weed’s genome that aid its success on farms, with mutations in genes related to drought tolerance, rapid growth and resistance to herbicides appearing frequently. “The types of changes we’re imposing in agricultural environments are so strong that they have consequences in neighbouring habitats that we’d usually think were natural,” said Dr. Kreiner.

The findings could inform conservation efforts to preserve natural areas in landscapes dominated by agriculture. Reducing gene flow out of agricultural sites and choosing more isolated natural populations for protection could help limit the evolutionary influence of farms.

Common waterhemp is native to North America and was not always a problematic plant. Yet in recent years, the weed has become nearly impossible to eradicate from farms thanks to genetic adaptations including herbicide resistance. 

“While waterhemp typically grows near lakes and streams, the genetic shifts that we’re seeing allow the plant to survive on drier land and to grow quickly to outcompete crops,” said co-author Dr. Sarah Otto, Killam University Professor at the University of British Columbia. “Waterhemp has basically evolved to become more of a weed given how strongly it’s been selected to thrive alongside human agricultural activities.”

Notably, five out of seven herbicide-resistant mutations found in current samples were absent from the historical samples. “Modern farms impose a strong filter determining which plant species and mutations can persist through time,” said Dr. Kreiner. “Sequencing the plant’s genes, herbicides stood out as one of the strongest agricultural filter determining which plants survive and which die.” 

Waterhemp carrying any of the seven herbicide resistant mutations have produced an average of 1.2 times as many surviving offspring per year since 1960 compared to plants that don’t have the mutations.

Herbicide resistant mutations were also discovered in natural habitats, albeit at a lower frequency, which raises questions about the costs of these adaptations for plant life in non-agricultural settings. “In the absence of herbicide applications, being resistant can actually be costly to a plant, so the changes happening on the farms are impacting the fitness of the plant in the wild,” said Dr. Kreiner.

Agricultural practices have also reshaped where particular genetic variants are found across the landscape. Over the last 60 years, a weedy southwestern variety has made an increasing progression eastward across North America, spreading their genes into local populations as a result of their competitive edge in agricultural contexts.
 
“These results highlight the enormous potential of studying historical genomes to understand plant adaptation on short timescales,” says Dr. Stephen Wright, co-author and Professor in Ecology and Evolutionary Biology at the University of Toronto. “Expanding this research across scales and species will broaden our understanding of how farming and climate change are driving rapid plant evolution.”

“Understanding the fate of these variants and how they affect plants in non-farm, ‘wild’ populations is an important next step for our work,” according to Professor John Stinchcombe of the University of Toronto, a coauthor on the study.



Journal

Science

DOI

10.1126/science.abo7293

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

How intensive agriculture turned a wild plant into a pervasive weed

Article Publication Date

8-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

A clump of sea campions next to some thrift or sea pinks.

Ancestral variation guides future environmental adaptations

January 27, 2023
Motile Sperm and Frequent Abortions in Spreading Earthmoss

Motile sperm and frequent abortions in spreading earthmoss

January 27, 2023

A transnational collaboration leads to the characterization of an emergent plant virus

January 26, 2023

Study shows that bioprinted artificial skin can be used in cosmetics and drugs testing

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In