• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How Hydra animals regenerate their own heads

Bioengineer by Bioengineer
December 8, 2021
in Biology
Reading Time: 3 mins read
0
Hydra
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new paper in Genome Biology and Evolution, published by Oxford University Press, maps out for the first time how Hydra, which are a group of small aquatic animals, can regenerate their own heads by changing the way that their genes are regulated, known as epigenetics.

Hydra

Credit: David Plachetzki

A new paper in Genome Biology and Evolution, published by Oxford University Press, maps out for the first time how Hydra, which are a group of small aquatic animals, can regenerate their own heads by changing the way that their genes are regulated, known as epigenetics.

Hydra belong to the group of animals that consists of about 10,000 species divided into two major groups: Anthozoa (comprising of sea anemones, corals, and sea pens) and Medusozoa (sea wasps, jellyfish, and hydra). Hydra, which live in temperate and tropical regions, are commonly believed to be biologically immortal; Hydra stem cells have a capacity for unlimited self-renewal. 

Whole-body regeneration occurs in a few animal species. The extent to which the genes and gene regulatory networks driving regeneration vary across species remains largely unexplored. Scientists still don’t understand the mechanism driving Hydra head regeneration. Previous studies have found evidence of regulation by multiple developmental pathways. Researchers have found several genes associated with head regeneration.

To understand the rudiments controlling Hydra head regeneration, researchers first identified 27,137 elements that are active in one or more sections of the organism body or regenerating tissue. Researchers used histone modification ChIP-seq, a method used to analyze how proteins interact with DNA, to identify 9998 candidate proximal promoter and 3018 candidate enhancer-like regions respectively. Their research shows that a subset of these regulatory elements is remodeled during head regeneration and identifies a set of transcription factor motifs that are enriched in the regions activated during head regeneration. These enriched motifs included developmental transcription factors.

This work identifies for the first time the specific candidate regulatory elements of the genome that change during Hydra head regeneration, which determine how organisms develop by turning on or off genes depending on need. “One exciting finding of this work is that the head regeneration and budding programs in Hydra are quite different, said the paper’s lead author, Aide Macias-Muñoz. “Even though the result is the same (a Hydra head), gene expression is much more variable during regeneration. Accompanying dynamic gene expression is dynamic chromatin remodeling at sites where developmental transcription factors bind. These findings suggest that complex developmental enhancers were present before the Cnidaria and Bilateria split.”

The paper “Coordinated gene expression and chromatin regulation during Hydra head regeneration” is available (at midnight on December 8th) at: https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab221.

Direct correspondence to: 
Aide Macias-Muñoz
Department of Developmental and Cell Biology
University of California Irvine,
Irvine, CA 92697
[email protected]

To request a copy of the study, please contact:
Daniel Luzer 
[email protected]



Journal

Genome Biology and Evolution

DOI

10.1093/gbe/evab221

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Coordinated gene expression and chromatin regulation during Hydra head regeneration

Article Publication Date

8-Dec-2021

COI Statement

N/A

Share12Tweet7Share2ShareShareShare1

Related Posts

Glutamate Deficit Affects Mouse Reproduction, Metabolism Sex-Specifically

Glutamate Deficit Affects Mouse Reproduction, Metabolism Sex-Specifically

October 21, 2025
Gender Variations in Pain Response to Cold Stress

Gender Variations in Pain Response to Cold Stress

October 21, 2025

Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

October 20, 2025

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

October 20, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    128 shares
    Share 51 Tweet 32

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transformative Stress Management in Nursing Students

Evaluating Badshabhog Mutants: Agro-Morphological and Grain Quality

Comparing Fall Hospitalization in Autistic vs. Non-Autistic Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.