• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How glial cells develop in the brain from neural precursor cells

Bioengineer by Bioengineer
December 10, 2018
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mainz University Medical Center publishes new findings that contribute to our understanding of neurodegenerative disorders

IMAGE

Credit: Neha Tiwari


Two types of cells are active in the brain: nerve cells and glial cells. The latter have long been regarded primarily as supportive cells, but it is increasingly recognized that they play an active role in the communication between neurons in the brain. What is more, according to current research, glial cells are also involved in the development of neurodegenerative diseases. A research team led by Professor Benedikt Berninger of the Institute of Physiological Chemistry at the Mainz University Medical Center has now produced new findings that may also help identifying what goes awry with glia in neurodegeneration. They studied how glial cells develop in the brain from neural precursor cells. The researchers discovered that differentiation involves three stages and that three proteins in the cell nucleus, so-called transcription factors, play a key role in organizing glia-specific transcription of the genes in the cell nucleus. The new findings have recently been published in Cell Stem Cell.

Glial cells are classified into three basic types: astrocytes and oligodendrocytes, both of which are so-called macroglia, and microglia. Astrocytes are the most common type and make up roughly 80 percent of the total number of glial cells. They are generated from cells known as radial glia or neural precursor cells. As Professor Benedikt Berninger and his team have now discovered using RNA sequencing, which is a method of profiling all genes in a cell that are undergoing transcription at a particular point in time, the differentiation process involves three stages. In the first stage, astroglial precursor cells are formed and then multiply by means of cell division. In the second stage, these astroglial precursor cells develop into young, immature astrocytes, which no longer divide. The third and final stage serves to enable the astrocytes to fully mature and become fully functional.

“Our study shows that the process of astrocyte formation is dynamic and that different genes are active in each of the different phases of the formation of the astroglial cells. These genes are regulated by transcription factors specific to each stage,” explained Berninger. Specifically, the research team was able to show that the transcription factors NFIA and ATF3 are important in initiating the differentiation of early astrocytes from their astroglial progenitors. When it comes to the transition from early astrocytes to fully differentiated astrocytes, the crucial agent is the transcription factor Runx2.

As previous studies have demonstrated, malfunctioning of the gene expression in astrocytes can cause these to become toxic to nerve cells. As a consequence, nerve cells die, which is a characteristic symptom of neurodegenerative diseases. “As we have now a better understanding of the processes involved in the formation of astrocytes, we can find out what goes wrong when these cells depart from their normal program and begin to progress down this toxic pathway,” said molecular geneticist Dr. Neha Tiwari, a member of Berninger’s team. “We suspect that the transcription factor Runx2 might have a significant function in preventing astrocytes from becoming reactive. Reactivity of astrocytes does not automatically mean that they become toxic, but it is a precondition,” concluded Berninger. “It may be possible in a future project to explore how Runx2 can be manipulated to prevent astrocytes becoming neurotoxic and thus causing the death of nerve cells.”

###

Media Contact
Benedikt Berninger
[email protected]
49-613-139-21334

Related Journal Article

http://dx.doi.org/10.1016/j.stem.2018.09.008

News source: https://scienmag.com/

Tags: BiochemistryCell BiologyMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Indian New Mothers Experience Improved Postpartum Wellbeing with Maternal Support, While Mother-in-Law Care Linked to Lower Wellness, Study Finds

September 10, 2025
Smartwatches Identify Early PTSD Indicators in Viewers of Oct 7 Israel Attack Coverage

Smartwatches Identify Early PTSD Indicators in Viewers of Oct 7 Israel Attack Coverage

September 10, 2025

Eye and Blood Protein Shows Strong Link to Cognitive Performance, Study Finds

September 10, 2025

Advancing Sustainability: Green Marketing and TQM in Nursing

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    60 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Indian New Mothers Experience Improved Postpartum Wellbeing with Maternal Support, While Mother-in-Law Care Linked to Lower Wellness, Study Finds

Pandemic Impact: How Owner Reports Suggest Changes in Dog Trainability

Smartwatches Identify Early PTSD Indicators in Viewers of Oct 7 Israel Attack Coverage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.