• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How equal charges in enzymes control biochemical reactions

Bioengineer by Bioengineer
April 25, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It is well known in physics and chemistry that equal charges repel each other, while opposite charges attract. It was long assumed that this principle also applies when enzymes – the biological catalysts in all living organisms – form or break chemical bonds. It was thought that enzymes place charges in their “active centres”, where the chemical reactions actually take place, in such a way that they repel similar charges from the other molecules around them. This concept is known as “electrostatic stress”. For example, if the substrate (the substance upon which the enzyme acts) carries a negative charge, the enzyme could use a negative charge to “stress” the substrate and thus facilitate the reaction. However, a new study by the University of Göttingen and the Max Planck Institute for Multidisciplinary Sciences in Göttingen has now shown that, contrary to expectations, two equal charges do not necessarily lead to repulsion, but can cause attraction in enzymes. The results were published in the journal Nature Catalysis.

Snapshot of enzyme reaction

Credit: Kai Tittmann

It is well known in physics and chemistry that equal charges repel each other, while opposite charges attract. It was long assumed that this principle also applies when enzymes – the biological catalysts in all living organisms – form or break chemical bonds. It was thought that enzymes place charges in their “active centres”, where the chemical reactions actually take place, in such a way that they repel similar charges from the other molecules around them. This concept is known as “electrostatic stress”. For example, if the substrate (the substance upon which the enzyme acts) carries a negative charge, the enzyme could use a negative charge to “stress” the substrate and thus facilitate the reaction. However, a new study by the University of Göttingen and the Max Planck Institute for Multidisciplinary Sciences in Göttingen has now shown that, contrary to expectations, two equal charges do not necessarily lead to repulsion, but can cause attraction in enzymes. The results were published in the journal Nature Catalysis.

 

The team investigated a well-known enzyme that has been studied extensively and is a textbook example of enzyme catalysis. Without the enzyme, the reaction is extremely slow: in fact, it would take 78 million years for half of the substrate to react. The enzyme accelerates this reaction by 1017 times, simply by positioning negative and positive charges in the active centre. Since the substrate contains a negatively charged group that is split off as carbon dioxide, it was assumed for decades that the negative charges of the enzyme serve to stress the substrate, which is also negatively charged, and accelerate the reaction. However, this hypothetical mechanism remained unproven because the structure of the reaction was too fast to be observed.

 

Professor Kai Tittmann’s group at the Göttingen Center for Molecular Biosciences (GZMB) has now succeeded for the first time in using protein crystallography to obtain a structural snapshot of the substrate shortly before the chemical reaction. Unexpectedly, the negative charges of enzyme and substrate did not repel each other. Instead, they shared a proton, which acted like a kind of molecular glue in an attractive interaction. “The question of whether two equal charges are friends or foes in the context of enzyme catalysis has long been controversial in our field, and our study shows that the basic principles of how enzymes work are still a long way from being understood,” says Tittmann. The crystallographic structures were analysed by quantum chemist Professor Ricardo Mata and his team from Göttingen University’s Institute of Physical Chemistry. “The additional proton, which has a positive charge, between the two negative charges is not only used to attract the molecule involved in the reaction, but it triggers a cascade of proton transfer reactions that further accelerate the reaction,” Mata explains.

 

“We believe that these newly described principles of enzyme catalysis will help in the development of new chemical catalysts,” says Tittmann. “Since the enzyme we studied releases carbon dioxide, the most important greenhouse gas produced by human activities, our results could help develop new chemical strategies for carbon dioxide fixation.”

 

The study involved scientists from the Göttingen Centre for Molecular Biosciences (GZMB), the Faculty of Biology and Psychology, and the Faculty of Chemistry at the University of Göttingen, as well as the Max Planck Institute for Multidisciplinary Sciences, the European Molecular Biology Laboratory (EMBL) Hamburg and the University of Toronto. The publication is dedicated to the memory of co-author Professor Ulf Diederichsen, who passed away last year.

 

Original publication: Sören Rindfleisch et al. Ground-state destabilization by electrostatic repulsion is not a driving force in orotidine-5′-monophosphate decarboxylase catalysis.  Nature Catalysis 2022.  https://doi.org/10.1038/s41929-022-00771-w

 

Contact:

 

Professor Kai Tittmann
University of Göttingen

Department of Molecular Enzymology

Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany

Tel: +49 (0)551-39177811
Email: [email protected]
www.uni-goettingen.de/en/sh/198266.html

 

Professor Ricardo Mata

University of Göttingen

Institute for Physical Chemistry

Tammannstraße 6, 37077 Göttingen

Tel: +49 (0) 551 39-23149

Email: [email protected]

www.uni-goettingen.de/en/people/123989.html



Journal

Nature Catalysis

DOI

10.1038/s41929-022-00771-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Ground-state destabilization by electrostatic repulsion is not a driving force in orotidine-5′-monophosphate decarboxylase catalysis

Article Publication Date

21-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Exercise Increases Dopamine Release in Mice

Exercise increases dopamine release in mice

May 16, 2022
Jon Agley

IU study explored how people’s beliefs impact overdose education and naloxone distribution programs

May 16, 2022

Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk

May 16, 2022

Precursor of spine and brain forms passively

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccinesWeaponryVirologyUrogenital SystemVirusVaccineZoology/Veterinary ScienceUrbanizationVehiclesUniversity of WashingtonWeather/Storms

Recent Posts

  • Exercise increases dopamine release in mice
  • IU study explored how people’s beliefs impact overdose education and naloxone distribution programs
  • Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk
  • Precursor of spine and brain forms passively
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....