• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How does the prion protein clump? DNA-modulated liquid droplets may explain

Bioengineer by Bioengineer
November 22, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Brazilian scientists have found that prion proteins form liquid droplets that can turn into a solid and toxic state, and that DNA modulates this process

IMAGE

Credit: Carolina Matos and Anderson Pinheiro


Researchers at the Federal University of Rio de Janeiro (UFRJ), in Brazil, have identified that the interaction between prion proteins and DNA may be behind the formation of protein amyloid aggregates and of the emergence of neurodegenerative diseases such as Creutzfeldt-Jakob disease and other spongiform encephalopathies. The study appears today in the FASEB Journal.

Led by UFRJ Professors Yraima Cordeiro and Anderson Pinheiro, the scientists have found that the prion protein (PrP) suffers liquid-liquid phase separation, and that this mechanism is finely controlled by some DNA sequences. In a process similar to oil droplets dispersed in an oil-water emulsion, the DNA leads PrP to form liquid droplets, turning it into a gel-like state or even changing them into a solid. They have also observed that these properties depend on the conformation of the DNA aptamer (a hairpin or extended conformation) and on the stoichiometry of the protein-nucleic acid interaction.

The process of turning liquid droplets into a solid state could explain the formation of abnormal and irreversible clumping of the prion protein, known as amyloid aggregates. These structures are toxic to the brain and are related to the development of transmissible spongiform encephalopathies, such as the Creutzfeldt-Jakob disease and the bovine spongiform encephalopathy (BSE), commonly known as mad cow disease. The link between amyloid aggregates and the diseases has been known for years, but how these structures form remains unclear. The study brings insights that might help answer this question.

The main findings of the research enlighten the property of the prion protein to bind nucleic acids in a similar fashion of well-described proteins that cause other neurodegenerative diseases. This opens the possibility of targeting the disease by selecting specific DNA sequences to control or avoid the organelles turning into non-functional gels and solids.

###

The paper “Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer” is available online on FASEB Journal.

Carolina O. Matos, a former graduate student in Pinheiro’s laboratory, is the paper’s first author. The other authors are Yulli M. Passos, Mariana J. do Amaral, Bruno Macedo and Matheus H. Tempone (actual and former members of Cordeiro´s laboratory); Ohanna C. L. Bezerra, Milton O. Moraes and Sotiris Missailidis, all of Oswaldo Cruz Foundation (Fiocruz), Brazil; Marcius S. Almeida and Jerson L. Silva, both of UFRJ; Gerald Weber of the Federal University of Minas Gerais, Brazil; and Vladimir N. Uversky of the University of South Florida, USA.

The research used resources from the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Center for Research in Energy and Materials (CNPEM) of the Brazilian Ministry for Science, Technology, Innovations and Communications (MCTIC), and the DNA sequencing platform at FIOCRUZ/RJ.

The study was funded in part by the Coordination for the Improvement of Higher Education Personnel, Ministry of Education (CAPES / MEC), the Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (FAPERJ), the National Council for Scientific and Technological Development (CNPq), a Brazil Initiative Collaboration Grant from Brown University, and the National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB).

Media Contact
Yraima Cordeiro
[email protected]
55-219-978-65403

Related Journal Article

http://dx.doi.org/10.1096/fj.201901897R

Tags: BiochemistryBiologyCell BiologyMedicine/HealthMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

September 9, 2025
blank

Antibody–Bottlebrush Prodrugs Revolutionize Targeted Cancer Therapy

September 9, 2025

The X-Age Project Builds Chinese Aging Clock

September 9, 2025

Addressing Therapeutic Inertia in U.S. Diabetes Care

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

Antibody–Bottlebrush Prodrugs Revolutionize Targeted Cancer Therapy

Researchers Discover Innovative Approach to Unlocking the Power of Swarm Intelligence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.