• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How do snakes ‘see’ in the dark? Researchers have an answer

Bioengineer by Bioengineer
October 21, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New insights explain how snakes convert infrared radiation into electrical signals

IMAGE

Credit: University of Houston

Certain species of snake – think pit vipers, boa constrictors and pythons, among others – are able to find and capture prey with uncanny accuracy, even in total darkness. Now scientists have discovered how these creatures are able to convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to “see” in the dark.

The work, published in the journal >Matter, provides a new explanation for how that process works, building upon the researchers’ previous work to induce pyroelectric qualities in soft materials, allowing them to generate an electric charge in response to mechanical stress.

Researchers have known electrical activity was likely to be involved in allowing the snakes to detect prey with such exceptional skill, said Pradeep Sharma, M.D. Anderson Chair Professor of mechanical engineering at the University of Houston and corresponding author for the paper. But naturally occurring pyroelectric materials are rare, and they are usually hard and brittle. The cells in the pit organ – a hollow chamber enclosed by a thin membrane, known to play a key role in allowing snakes to detect even small temperature variations – aren’t pyroelectric materials, said Sharma, who also is chairman of the Department of Mechanical Engineering at UH.

But when he and colleagues last year reported producing pyroelectric effects in a soft, rubbery material, something clicked.

“We realized that there is a mystery going on in the snake world,” he said. “Some snakes can see in total darkness. It would be easily explained if the snakes had a pyroelectric material in their bodies, but they do not. We realized that the principle behind the soft material we had modeled probably explains it.”

Not all snakes have the ability to produce a thermal image in the dark. But those with a pit organ are able to use it as an antenna of sorts to detect the infrared radiation emanating from organisms or objects that are warmer than the surrounding atmosphere. They then process the infrared radiation to form a thermal image, although the mechanism by which that happened hasn’t been clear.

Sharma and his colleagues determined that the cells inside the pit organ membrane have the ability to function as a pyroelectric material, drawing upon the electrical voltage that is found in most cells. Through modeling, they used their proposed mechanism to explain previous experimental findings related to the process.

“The fact that these cells can act like a pyroelectric material, that’s the missing connection to explain their vision,” Sharma said.

This work was part of the Ph.D. dissertation of Faezeh Darbaniyan, first author on the paper. Additional researchers on the project include Kosar Mozaffari, a student at UH, and Professor Liping Liu of Rutgers University.

The work explains the mechanism by which the cells are able to take on pyroelectric properties, although questions remain, including how the proposed mechanism is related to the role played by the increased number of ion channels found in TRPA1 proteins. TRPA1 proteins are more abundant in the cells of pit-organ snakes than in non-pit snakes.

“Our mechanism is very robust and simple. It explains quite a lot,” Sharma said. “At the same time, it is undeniable these channels play a role as well, and we are not yet sure of the connection.”

###

Media Contact
Jeannie Kever
[email protected]

Original Source

https://uh.edu/news-events/stories/2020/october-2020/10212020sharma-snake-vision.php

Related Journal Article

http://dx.doi.org/10.1016/j.matt.2020.09.023

Tags: BiologyCell BiologyMaterials
Share14Tweet9Share2ShareShareShare2

Related Posts

Scientists develop red fluorescent dyes to enhance clarity in biomedical imaging

Scientists develop red fluorescent dyes to enhance clarity in biomedical imaging

October 6, 2025
blank

Breakthrough: Ultrafast Squeezed Light Enables First Real-Time Measurement of Quantum Uncertainty

October 6, 2025

Exploring the Third Dimension in Data Storage Technology

October 6, 2025

Innovative “Stick-Peel-Reuse” Adhesive Developed Using Lock-and-Key Chemistry

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    72 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Oncology Leaders Convene at National Press Club on October 24: NFCR Summit Showcases AI Innovation in Cancer Research and Care

Boosting Heart Health in Young Adults Lowers Cardiovascular Disease Risk Later in Life

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.