• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How diet influences taste sensitivity and preference

Bioengineer by Bioengineer
December 15, 2021
in Biology
Reading Time: 4 mins read
0
Anupama Dahanukar and Manali Dey
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

RIVERSIDE, Calif. — What you eat influences your taste for what you might want to eat next. So claims a University of California, Riverside, study performed on fruit flies.

Anupama Dahanukar and Manali Dey

Credit: Stan Lim, UC Riverside.

RIVERSIDE, Calif. — What you eat influences your taste for what you might want to eat next. So claims a University of California, Riverside, study performed on fruit flies.

The study, published in the Journal of Neuroscience, offers a better understanding of neurophysiological plasticity of the taste system in flies.

To maintain ideal health, animals require a balanced diet with optimum amounts of different nutrients. Macronutrients like carbohydrates and proteins are essential; indeed, an unbalanced intake of these nutrients can be detrimental to health. Flies require macronutrients such as sugars and amino acids for survival. They use the gustatory system, the sensory system responsible for the perception of taste, to sense these nutrients and begin feeding.

In their experiments in the lab, the researchers Anindya Ganguly and Manali Dey, led by Anupama Dahanukar, fed adult flies different diets: a balanced diet, a sugar-reduced and protein-enriched diet, and a sugar-enriched and protein-depleted diet. They ensured that all three diets were similar in total calorie content and tested the flies daily for a week to examine modifications in their food choice and taste sensitivity. 

The researchers report that diet affects dopamine and insulin signaling in the brain, which, in turn, affects the flies’ peripheral sensory response, which is comprised of neurons directly involved in detecting external stimuli. This response then influences what the flies eat next.

“We found diet changed the flies’ taste preference,” said Dahanukar, an associate professor of molecular, cell and systems biology. “For a diet with excess protein at the expense of carbohydrates, the flies’ taste sensitivity changed so that they mounted a compensatory behavioral response in the short term to eat more carbohydrates and less protein in order to regain a balanced diet.”

What this may mean for other animals, including humans, is that conserved signaling pathways could play a role in mounting similar diet-induced changes in taste. Individuals on a high sugar diet could see a dampening of sugar taste, making sugars less palatable at least for the short term. Similarly, a low protein diet would enhance umami taste, increasing the value of protein-rich foods to be consumed next.

“Changes in gene expression appear to be involved,” said Ganguly, a former graduate student at UC Riverside and now a postdoctoral researcher at UC Santa Barbara. “We see these changes in flies based on dietary exposure for just a day or two.”

Interestingly, when the flies that were fed unbalanced diets were returned to a balanced diet, their taste sensitivity returned to baseline levels, suggesting that changes in taste preference are reversible. 

“Our work shows that imbalances in diet affect your taste preferences in a way that help you in the short term at least,” said Dey, a graduate student in Dahanukar’s lab. “They help you change your taste so that you prefer foods that benefit you, foods that would help you achieve metabolic homeostasis again.”

Dahanukar cautioned, however, that long term effects on consumption may be more complex. For example, research by other scientists has shown that while flies raised on a high sugar diet saw their sugar response decrease in the short term, flies maintained on that diet consumed more of that food in the long term.

Dahanukar, Ganguly, and Dey were joined in the study by Christi Scott and Vi-Khoi Duong. Scott is a former graduate student and postdoctoral researcher at UCR. She helped analyze transcriptome data. Duong is a former undergraduate student who did his honors thesis in Dahanukar’s lab. He is now in dental school.

The research paper is titled “Dietary Macronutrient Imbalances Lead to Compensatory Changes in Peripheral Taste via Independent Signaling Pathways.”

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 26,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual impact of more than $2.7 billion on the U.S. economy. To learn more, visit www.ucr.edu.



Journal

JNeurosci

DOI

10.1523/JNEUROSCI.2154-20.2021

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Dietary Macronutrient Imbalances Lead to Compensatory Changes in Peripheral Taste via Independent Signaling Pathways.

Article Publication Date

15-Dec-2021

COI Statement

The authors declare no competing financial interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.