• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, April 12, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How cobras developed flesh-eating venom

Bioengineer by Bioengineer
March 14, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy Associate Professor Fry.

A University of Queensland-led international study has revealed how one of the world's most feared types of snakes — cobras — developed their potent venom.

Associate Professor Bryan Fry of UQ's School of Biological Sciences said cobras were killers in Africa and Asia, and caused crippling social and economic burdens through the number of survivors who needed amputations due to the snake's flesh-eating venom.

"While we knew the results of their venom, how the cobra's unique defensive venom evolved remained a mystery until now," he said.

"Our study discovered the evolutionary factors shaping not only cobra venom, but also the ornate markings on their hoods, and the extremely bright warning colourings present in some species."

The research team studied 29 cobra species and related snakes, finding that the flesh-destroying venom first evolved alongside the broad hoods that make cobras so distinctive.

Dr Fry said further increases in the potency of the toxins subsequently occurred parallel to their warning strategies such as hood markings, body banding, red colouring and spitting.

"Their spectacular hoods and eye-catching patterns evolved to warn off potential predators because unlike other snakes, which use their venom purely for predation, cobras also use it in defence," he said.

"For the longest time it was thought that only spitting cobras had these defensive toxins in high amounts in their venoms, however we've shown that they are widespread in cobras.

"These results show the fundamental importance of studying basic evolution and how it relates to human health."

Dr Fry said the next step in the team's research was to conduct broad antivenom testing.

"Globally, snakebite is the most neglected of all tropical diseases and antivenom manufacturers are leaving the market in favour of products that are cheaper to produce and have a bigger market," he said.

"Antivenom is expensive to make, has a short shelf life and a small market located in developing countries.

"Therefore, we need to do further research to see how well those remaining antivenoms neutralise not only the toxins that kill a person, but also those that would cause a severe injury."

He said there may also be a benefit to this research in cancer treatment.

"Any kind of compound that selectively kills cells could be a good thing," Dr Fry said.

"These chemicals may lead to new cancer treatments if we can find ones that are more potent to cancer cells than normal healthy cells.

"Cobras are a rich resource of novel compounds in this way so there may ultimately be a silver lining to this very dark cloud."

###

The study, published today in the journal, Toxins, involved scientists from UQ's Venom Evolution Lab; QIMR Berghofer Institute of Medical Research; UQ School of Medicine; Swansea University, UK; Monash University; working groups for Adder Research and Venomous Bites in the Netherlands; Leiden University, Netherlands; Snakebite Assist, Pretoria, South Africa; Pretoria University; Venom Supplies, South Australia; and Planet Exotica, France.

Media Contact

Associate Professor Bryan Fry
[email protected]
61-400-193-182
@uq_news

http://www.uq.edu.au

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Research suggests SEC’s increasing focus on terrorism may limit financial oversight

April 12, 2021
IMAGE

Plastic planet: Tracking pervasive microplastics across the globe

April 12, 2021

Scientists watch 2D puddles of electrons emerge in a 3D superconducting material

April 12, 2021

Leader in global nitrogen cycle research Eric Davidson named Jefferson Science Fellow

April 12, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthEcology/EnvironmentInfectious/Emerging DiseasesBiologyCell BiologycancerTechnology/Engineering/Computer ScienceMaterialsChemistry/Physics/Materials SciencesGeneticsClimate ChangePublic Health

Recent Posts

  • Research suggests SEC’s increasing focus on terrorism may limit financial oversight
  • Plastic planet: Tracking pervasive microplastics across the globe
  • Scientists watch 2D puddles of electrons emerge in a 3D superconducting material
  • Leader in global nitrogen cycle research Eric Davidson named Jefferson Science Fellow
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In