• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How climate caprices can trigger plants

Bioengineer by Bioengineer
January 27, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (Picture: Kenji Fukushima)

Plants and other organisms can adapt their phenotypes to fluctuating environmental conditions within certain limits. The leaves of the dandelion, for example, are much more small in sunny locations than in shady places. In the sun, less leaf area is adequate to drive sufficient photosynthesis. This makes sense and is part of the dandelion’s genetic programming.

However, plants can deviate from their normal programming if they are under constant heat stress or other extreme factors that endanger their survival. They then develop, for example, a wide range of leaf shapes that are extremely rare under natural conditions. In this case, scientists speak of “hidden reaction norms”.

Pitcher plants cultivated in growth chambers

The influences that cause these reactions have been largely unknown until now. But especially in view of climate change, researchers would like to find answers to this question.

An international research team now shows in the journal Proceedings of the Royal Society B what variety of malformed leaves the carnivorous Australian pitcher plant Cephalotus follicularis can form. To tease out these hidden reaction norms, they subjected the plants for twelve weeks to different conditions in growth chambers.

“The hidden reaction norms of this plant could be revealed when uncommon combinations of benign or neutral environmental stimuli prevail,” says biologist Dr Kenji Fukushima from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany. Then the plant deviates from its normal programming, according to which it either forms flat, photosynthetically active leaves or leaves transformed into insect traps.

Reaction to short days with high temperatures

If the plants grew in summer temperatures but with only a few hours of light, they increasingly formed misregulated leave phenotypes. These are exactly the conditions that are becoming more common in many regions of the world due to climate change: Short spring or autumn days which are too warm for the season.

The conclusion of Dr Fukushima and his co-authors from the National Institute for Basic Biology in Okazaki (Japan): “Climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues.”

###

Media Contact
Dr Kenji Fukushima
[email protected]

Original Source

https://go.uniwue.de/pitchers

Related Journal Article

http://dx.doi.org/10.1098/rspb.2020.2568

Tags: BiologyClimate ChangeDevelopmental/Reproductive BiologyEcology/EnvironmentPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025
blank

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025

Endophytic Microbes in Garlic Enhance Plant Growth

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    190 shares
    Share 76 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Lactate’s Role in AML Prognosis

Exploring Autism, Psychosis, and Catatonia Connections

LAMB3 Expression Linked to Thyroid Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.