• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How best to treat infections and tumors

Bioengineer by Bioengineer
February 9, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NIAID (MRSA), Dr. Cecil Fox (Photographer), via Wikimedia Commons (cancer cells).

In cases where drug resistance can lead to treatment failure, new research shows that therapies tailored to contain an infection or a tumor at tolerable levels can, in some cases, extend the effective life of the treatment and improve patient outcomes. In other cases, aggressive treatments aimed at eliminating as much of the infection or tumor as possible — the traditional approach — might be best. But how can we know which stands the better chance of working?

A new mathematical analysis by researchers at Penn State University and the University of Michigan, publishing February 9, 2017, in the open-access journal PLOS Biology, identifies the factors that determine which of the two approaches will perform best, providing physicians and patients with new information to help them make difficult treatment decisions.

"People die when their infections or tumors become drug resistant," said Andrew Read, Evan Pugh Professor of Biology and Entomology and Eberly Professor of Biotechnology at Penn State and an author of the study. "We analyzed when it might be better to use drugs to contain rather than try to eliminate the infection or tumor. We find there are situations where containment would keep the patient alive longer, but also situations where it would make a dire situation even worse. That means using (and testing) the containment strategy needs to be done very carefully, but if done right, it could help patients with life-threatening infections and tumors live longer."

The researchers compared the two treatment strategies with the goal of maximizing the amount of time until the treatment failed due to the development of drug resistance. For most infections and tumors, people can tolerate a certain amount of the pathogen without ill effects. For the analysis, a patient was considered healthy and the infection or tumor was considered to be managed if it was maintained at or below this level of "acceptable burden." Treatment failed if the pathogen level rose above this level. The analysis showed that the treatment leading to the longest time until treatment failure will depend on the specific characteristics of the disease, or even of the patient being treated, but it provides a framework that doctors and patients can use to make more-informed decisions about treatments.

"There are situations where we can be relatively sure that treatment will completely eliminate the infection or tumor, so aggressive treatment is the obvious choice" said Elsa Hansen, a research associate at Penn State and an author of the paper. "On the opposite end of the spectrum, there are low-level situations like urinary-tract or ear infections where a doctor may decide not to treat at all. The majority of cases, however, are somewhere in between and require hard choices that balance the damage caused by the infection or tumor and the risk of mutation with the damage caused by the treatment itself and the risk of developing uncontrollable resistance. Our analysis provides guidance for making these decisions from a standpoint of maximizing patient well-being."

The researchers focused on two main factors that influence whether or not an infection or tumor will develop drug resistance. The first is the rate at which cells that are initially sensitive to a particular treatment become resistant. The second factor is called "competitive suppression" and refers to the fact that the spread of resistance, once it appears, can be slowed through competition for resources with cells that are sensitive to treatment. More cells that still respond to treatment leads to more competition to prevent the spread of resistant cells, but it also means a greater risk of the sensitive cells developing resistance.

"The standard practice has been to treat infections and tumors as aggressively as possible to minimize the risk of cells becoming resistant," said Read, "but our analysis shows that, in many situations, containing the infection or tumor to allow for competitive suppression of resistant cells can increase the time to treatment failure. Of course, the opposite can also be true, so determining which approach will be best has to be done carefully and on a case-by-case basis".

###

In addition to Read and Hansen, the research team includes Robert J. Woods at the University of Michigan. The research was funded by the National Institute of General Medical Science of the U. S. National Institutes of Health and the Penn State Eberly Family Professorship in Biotechnology.

CONTACT

Andrew Read: [email protected], 814-321-5004

IMAGE

An image with caption and credit is available at https://psu.box.com/v/Read2-2017

CAPTION

Methicillin-resistant Staphylococcus aureus (top, purple), cancer cells (bottom). Treatment designed to contain, rather than eliminate, chronic infections or tumors where drug resistance can emerge may delay treatment failure. Credit: NIAID (MRSA), Dr Cecil Fox (Photographer), via Wikimedia Commons (cancer cells).

ARCHIVE

— After the embargo lifts, this information will be archived at http://science.psu.edu/news-and-events/2017-news/Read2-2017

Media Contact

Barbara K. Kennedy
[email protected]
814-863-4682
@penn_state

http://live.psu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

CRF and the Jon DeHaan Foundation Announce Launch of TCT AI Lab at TCT 2025

CRF and the Jon DeHaan Foundation Announce Launch of TCT AI Lab at TCT 2025

September 16, 2025
blank

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

September 16, 2025

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

September 16, 2025

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRF and the Jon DeHaan Foundation Announce Launch of TCT AI Lab at TCT 2025

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.