• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How bees stay cool on hot summer days

Bioengineer by Bioengineer
February 8, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Detecting the ventilation strategy of honey bees

IMAGE

Credit: (Image courtesy of Jacob Peters/Harvard SEAS)

If you’ve ever walked past a bee’s nest on a hot summer day, you’ve probably been too focused avoiding getting stung, rather than stopping to wonder how all those bees stay cool. Don’t worry, Harvard scientists have braved the stingers to ask and answer that question for you.

Honey bees live in large, congested nest cavities, often in tree hollows with narrow openings. When it gets hot inside the nest, a group of bees crawl to the entrance and use their wings as fans to draw hot air out and allow cooler air to move in. The question is, how do bees self-organize into these living ventilating units?

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Department of Organismic and Evolutionary Biology (OEB) have developed a framework that explains how bees use environmental signals to collectively cluster and continuously ventilate the hive.

“Over millennia, social insects such as bees have evolved to harness and exploit flows and forces and collectively solve physiological problems such as mechanical stabilization, thermoregulation and ventilation on scales much larger than the individual,” said L Mahadevan, de Valpine Professor of Applied Mathematics, Physics, and Organismic and Evolutionary Biology, and senior author of the study. “A combination of measurements and computational models quantify and explain how fanning bees create an emergent large-scale flow pattern to ventilate their nests.”

“We have demonstrated that bees don’t need a sophisticated recruitment or communications scheme to keep their nests cool,” said Jacob Peters, a postdoctoral fellow in SEAS and OEB, and first author of the paper. “Instead the fanning response of individual bees to temperature variations, and the physics of fluid flow leads to their collective spatial organization, which happens to lead to an efficient cooling solution.”

The paper is published in the Journal of the Royal Society Interface.

Experiments began in the dog days of the summer of 2017. Over the course of several weeks, Peters, Mahadevan and former postdoctoral fellow at SEAS Orit Peleg monitored a group of man-made beehives in Harvard University’s Concord Field Station.

The research team measured temperature, air flow into and out of the nest, and the position and density of bees fanning at the nest entrance. They observed that rather than spreading out across the entirety of the nest entrance, the bees clustered at the hottest areas and kept those areas, which had the highest air outflow, separate from the cooler areas with the highest air inflow. Importantly, they found that different bees had different temperature thresholds above which they would begin fanning, so that collectively they were better at responding to temperature variations.

In modeling the system, the researchers found that all these behaviors linked to the environmental physics of the nest. Fanning outward allows the bees to sense the upstream nest temperature; different thresholds of temperature allows for more continuous ventilation and more stable hive temperatures; and, because of the physics of friction and flow, clustering to separate inflow from outflow allows more cool air to enter the nest because of the physics of friction and flow.

“Our study demonstrates how harnessing the dynamics of the physical environment allows for large-scale organization of a physiological process,” said Peleg, who co-authored the paper and is now an Assistant Professor at the University of Colorado Boulder.

“Although this is a physics-focused story, biological variation with roots in genetics and evolution likely plays a big role in order for this system to work,” said Peters. “Our theory suggests that not only does individual variability in temperature threshold lead to a more stable hive temperature but also this diversity is critical to the stability of the patterning of fanning behavior which is required for efficient ventilation.”

“In everything from large HVAC systems to the fans that cool our computers, bioinspired, self-organizing systems may be able to adapt and respond to specific demands better than current systems,” said Peters.

“More broadly, our study highlights, yet again, the need to consider both biological organisms and their physical environments to understand the richness of collective eco-physiology, a hallmark of life itself,” said Mahadevan.

###

This work was supported by the National Science Foundation.

Media Contact
Leah Burrows
[email protected]
617-496-1351

Original Source

https://www.seas.harvard.edu/content/how-bees-stay-cool-on-hot-summer-days

Related Journal Article

http://dx.doi.org/10.1098/rsif.2018.0561

Tags: Algorithms/ModelsBiologyBiotechnologyEcology/EnvironmentEntomologyEvolution
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative 3D-Printed Scaffolds Pave the Way for Spinal Cord Injury Recovery

Innovative 3D-Printed Scaffolds Pave the Way for Spinal Cord Injury Recovery

August 25, 2025
blank

Regulating Flavonoids and Hormones in Ancient Ginkgo

August 25, 2025

Acacia Saligna Seed Meal: A Soy Replacement for Broilers

August 25, 2025

Cell Science Unlocked: The Dynamic Duo of Essential Tools for Discovery

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Star Apple Oil: Composition and Antimicrobial Power

Revamping EDE-Q and CIA for Inpatient Care

Linking Surrogate Endpoints to Outcomes in IgA Nephropathy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.