• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How an egg cell’s “operating manual” sets the stage for fertility

Bioengineer by Bioengineer
October 8, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genetic instructions immature egg cells go through step by step as they mature into functionality revealed in unprecedented detail

IMAGE

Credit: Figure is courtesy of Allan Spradling and Wanbao Niu. Underlying image purchased from Shutterstock. Composite created by Navid Marvi.

Baltimore, MD– Recently published work from Carnegie’s Allan Spradling and Wanbao Niu revealed in unprecedented detail the genetic instructions immature egg cells go through step by step as they mature into functionality. Their findings improve our understanding of how ovaries maintain a female’s fertility.

The general outline of how immature egg cells are assisted by specific ovarian helper cells starting even before a female is born is well understood. But Spradling and Niu mapped the gene activity of thousands of immature egg cells and helper cells to learn how the stage is set for fertility later in life.

Even before birth, “germ” cells assemble a finite number of cell clusters called follicles in a female’s ovaries. Follicles consist of an immature egg cell and some “helper” cells, which guide the egg through its maturation process. It is from a follicle that a mature egg cell bursts during ovulation.

“Follicles are slowly used up during a female’s reproductive lifespan and menopause ensues when they run out. Understanding what it takes for follicles to form and develop successfully, helps us learn how damaged genes or adverse environmental factors, including a poor diet, can interfere with fertility,” explained Spradling. “By documenting the follicle’s genetic operating manual, problems in egg development that might lead to birth defects –as a result of mutations or due to bad nutrition– can be better understood and reduced.”

Spradling and Niu sequenced 52,500 mouse ovarian cells at seven stages of follicle development to determine the relative expression of thousands of genes and to characterize their roles.

The study also illuminated how mammalian ovaries produce two distinct types of follicles and Spradling and Niu were able to identify many differences in gene activity between them.

The first, called wave 1 follicles, are present in the ovary even before puberty. In mice, they generate the first fertile eggs; their function in humans is poorly understood, but they may produce useful hormones. The second type, called wave 2 follicles, are stored in a resting state but small groups are activated to mature during a female’s hormonal cycle, ending in ovulation. The findings help clarify each type’s roles.

Spradling and Niu’s work and all its underlying data were published by Proceedings of the National Academy of Sciences.

“We hope our work will serve as a genetic resource for all researchers who study reproduction and fertility,” concluded Spradling.

###

This work was funded by the Howard Hughes Medical Institute.

Media Contact
Allan Spradling
[email protected]

Original Source

https://carnegiescience.edu/news/how-egg-cells-operating-manual-sets-stage-fertility

Related Journal Article

http://dx.doi.org/10.1073/pnas.2005570117

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyFertilityGeneticsGynecologyMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Senior Nursing Students Encounter End-of-Life Experiences

January 11, 2026

Kawasaki Disease Linked to Hepatitis and Torque Teno Virus

January 11, 2026

Developing Efficient Protocols for Respiratory Virus Biobank

January 11, 2026

Young Male Refugees’ Mental and Sexual Health Insights

January 11, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    66 shares
    Share 26 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Senior Nursing Students Encounter End-of-Life Experiences

Kawasaki Disease Linked to Hepatitis and Torque Teno Virus

Developing Efficient Protocols for Respiratory Virus Biobank

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.