• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How a mitochondrial enzyme can trigger cell death

Bioengineer by Bioengineer
March 14, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Illustration by Patrick van der Wel and Mingyue Li

Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria. It is also involved in signaling dangerous problems that warrant apoptosis, or programmed cell death. Using solid-state NMR, University of Groningen Associate Professor of Solid-State NMR Spectroscopy Patrick van der Wel and colleagues from the University of Pittsburgh have discovered that the signal induced by cytochrome c is more controlled than expected. The results were published in the journal Structure on 14 March.

If cells malfunction, the body wants to get rid of them before they do more damage. Different signals can drive a cell to self-destruct through apoptosis. Widespread programmed cell death contributes to the progression of neurodegenerative diseases such as Huntington’s disease. A strong signal to trigger apoptosis is the oxidation of cardiolipin, a phospholipid that is only present in the membrane of mitochondria, the cell’s power stations. ‘Mitochondria have two membranes and this cardiolipin is primarily present in the inner membrane,’ explains Van der Wel. ‘When it is oxidized and moves to the outer membrane, it will trigger apoptosis.’

Atoms

Drugs that prevent the oxidization of cardiolipin also reduce cell death and can slow down the progression of Huntington’s disease in animal models. However, cells accelerate the oxidation process through the catalytic activity of cytochrome c, an enzyme that contains a reactive haem group. ‘This suggests that the oxidation event is not accidental but may also act as a useful and desirable signal for the cell,’ explains Van der Wel.

Van der Wel wanted to find out how the oxidization of the cardiolipin by cytochrome c takes place through studying the behavior of the enzyme when it interacts with the mitochondrial membrane. To do this, he used solid-state NMR, a technique that allows scientists to study atoms in molecules such as proteins or lipids. ‘The signal from atoms that you measure by means of NMR is affected by the atoms’ surroundings. Therefore, a change in the shape of the protein would alter the signal.’ Van der Wel compared cytochrome c in solution with membrane-bound cytochrome c to see how interaction with the membrane altered its structure.

Protein loop

‘We expected that the protein would be inside the membrane, in an unfolded state that exposes the reactive haem group.’ The haem would then easily oxidize the cardiolipin. However, the results showed something different. ‘The enzyme doesn’t enter the membrane but is bound to membrane domains containing cardiolipin, and it remains folded. However, a protein loop covering the haem group will sometimes move aside, exposing the phospholipids to the haem group.’

This observation suggests that the action of cardiolipin in apoptosis is to a certain extent regulated, and not just a passive response to oxidative conditions. This could have implications for diseases in which cell death plays an important role. ‘If the active form of cytochrome c is still folded, it might be possible to develop drugs that stop it from oxidizing cardiolipin.’ Another possible point of intervention is the binding of the enzyme to specific membrane domains. And finally, problems with the mitochondria can either induce apoptosis or the less invasive removal of just the affected mitochondrion. ‘If we could understand how this choice is made, we might be able to influence this process.’

Materials

The experiments described in the paper in Structure were performed at the University of Pittsburgh, where Van der Wel worked prior to his transfer to the University of Groningen last year. He is now building a solid-state NMR group at the Zernike Institute for Advanced Materials, part of the Faculty of Science and Engineering. ‘This technique will also be used to study alternative ways of protein folding, for example, the formation of amyloids. These protein aggregates play a role in neurodegenerative diseases but they could also be used to design new functional materials.’

###

Reference: Li M, Mandal A, Tyurin VA, DeLucia M, Ahn J, Kagan VE, van der Wel PCA: Surface-binding to Cardiolipin Nanodomains Triggers Cytochrome C Pro-apoptotic Peroxidase Activity via Localized Dynamics, Structure 14 March 2019

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2019/03/20190314_pvdwel

Related Journal Article

http://dx.doi.org/10.1016/j.str.2019.02.007

Tags: AlzheimerBiologyCell Biologyneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRISPR Live Imaging Unveils Chromatin and Enhancer Dynamics

Hydrogen Projects’ Impact on Global Emission Cuts

Eight Millennia of Unknown Argentine Lineage Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.