• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How a ‘conductor’ makes sense of chaos in early mouse embryos

Bioengineer by Bioengineer
May 7, 2024
in Biology
Reading Time: 3 mins read
0
Early stages of mouse embyro development
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Early embryonic development is tumultuous. It involves a rapid sequence of events, including cell division, differentiation, and lots of compartments moving around within each cell. Like an orchestra performance where each member of the band must start playing at the exact right moment and in perfect harmony, these processes need to be precisely timed and coordinated to ensure the embryo develops normally.

Early stages of mouse embyro development

Credit: Shoma Nakagawa/Centro de Regulación Genómica

Early embryonic development is tumultuous. It involves a rapid sequence of events, including cell division, differentiation, and lots of compartments moving around within each cell. Like an orchestra performance where each member of the band must start playing at the exact right moment and in perfect harmony, these processes need to be precisely timed and coordinated to ensure the embryo develops normally.

How cells make sense of this chaos at the very beginning of an embryo’s development is an open question. The protein NKX1-2 a crucial role, according to a new study published today in the journal Stem Cell Reports by ICREA Research Professor Pia Cosma at the Centre for Genomic Regulation (CRG) in Barcelona and Professor Andrea Califano President of the Chan Zuckerberg Biohub New York and Professor at Columbia University.

NKX1-2 behaves like an orchestra’s conductor, skilfully ensuring that the genetic instructions for developing the embryo are executed correctly and at the right times. The protein helps manage the production and organisation of the cell’s machinery for making proteins (like ribosomes) and is also crucial for keeping chromosomes organized and properly distributed when cells divide.

When the researchers experimentally inhibited the function of NKX1-2 in mice, they found the nucleolus (a part of the nucleus that assembles ribosomes) was severely altered, disrupting the embryo’s ability to produce ribosomes correctly. They also found the 2- to 4-cell embryos could not distribute chromosomes correctly during cell division, and would stop growing at these very early stages of development.

“NKX1-2 belongs to a protein family which is known to play crucial roles in early development and organ formation. While we knew that members of this family were important in general development, NKX1-2’s specific role, especially in early embryonic stages, wasn’t well understood,” explains ICREA Research Professor Pia Cosma, corresponding author of the study.

“It is intriguing that such mechanistic determinants of embryogenesis could be identified by assembling and interrogating a mouse embryonic stem cell regulatory network, using methodologies originally developed for cancer research,” adds Dr. Califano, co-corresponding author on the study.

Given the similarities in early developmental processes between mice and humans, the findings offer new clues into unexplained causes of developmental problems, including miscarriages. Miscarriages often result from chromosomal abnormalities, which can arise from issues like those observed in the study — improper chromosome segregation and cell division errors. Further research could explore if there is a human counterpart that influences these fundamental processes as it does in mice, and what happens when it fails.

Despite the importance of NKX1-2 in early embryo development, the researchers suspect more ‘conductors’ remain to be discovered. “NKX1-2 is expressed at very low levels, which makes it extremely difficult to detect. It’s like trying to find a needle in a haystack using traditional methods in biology. Repeating our methods could help find other rare and critical elements that have been historically overlooked,” adds Dr. Cosma.



Journal

Stem Cell Reports

DOI

10.1016/j.stemcr.2024.04.004

Method of Research

Experimental study

Subject of Research

Cells

Article Title

The Wnt-dependent master regulator NKX1-2 controls mouse pre-implantation development

Article Publication Date

2-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Nextflow Pipeline Enhances QTL Mapping in Salmon

Nextflow Pipeline Enhances QTL Mapping in Salmon

November 21, 2025
Whole-Genome Resequencing Uncovers Adaptation in Extreme Sheep

Whole-Genome Resequencing Uncovers Adaptation in Extreme Sheep

November 20, 2025

Genotyping Enterocytozoon bieneusi in Preweaned Calves

November 20, 2025

Ovarian Hydatidosis: Diagnostic and Management Challenges

November 20, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Chitosan Films Enhance Silver Carp Preservation

New Framework Predicts PTP1B Inhibitor Activity

Nextflow Pipeline Enhances QTL Mapping in Salmon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.