• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How a butterfly tree becomes a web

Bioengineer by Bioengineer
July 16, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by Krzysztof Kozak and Jorge Aleman. Photo credits: Luca Livraghi, Michel Cast.

Evolution is often portrayed as a tree, with new species branching off from existing lineages, never again to meet. The truth however is often much messier. In the case of adaptive radiation, in which species diversify rapidly to fill different ecological niches, it can be difficult to resolve relationships, and the phylogeny (i.e. evolutionary tree) may look more like a bush than a tree. This is because lineages may continue to interbreed as new species are established, and/or they may diverge and then re-hybridize, resulting in genetically mixed populations (known as admixture). Even after species diverge, the introduction of genes from one species to another (known as introgression) can occur. All of this results in a network of related species, rather than a simple tree. The extent to which these processes occur and their evolutionary and genomic impacts are not well understood, partially due to the “tree-like” assumptions of the models that are used to construct phylogenies. In a new study in Genome Biology and Evolution titled “Rampant genome-wide admixture across the Heliconius radiation,” Krzysztof Kozak of the University of Cambridge and colleagues demonstrate the key role that interspecific gene flow played in the continent-wide adaptive radiation of the Heliconius butterflies. This study adds to the rich literature on Heliconius, a genus that provided some of the earliest evidence for the theory of evolution thanks to their distinctive wing patterns and colors, which help warn predators of their toxic nature.

According to Kozak and his co-authors, “the Neotropical Heliconius butterflies present an excellent opportunity to study the incidence and importance of gene flow in a recent adaptive radiation, due to the natural propensity of Heliconius and the sister genus Eueides to produce hybrids in the wild.” In addition, the genes controlling their wing patterns are likely to be prime targets for selection and introgression, allowing different poisonous species to mimic each other and thus reinforcing the warning signal to predators.

The study included genomic data from 145 individuals, representing 40 of the 47 recognized Heliconius species and 6 of the 12 Eueides species, allowing a comprehensive investigation into departures from a strict tree model. The analysis revealed several discrepancies in the evolutionary history of individual genes, suggesting the possibility of extensive gene flow among lineages. Overall, the authors uncovered 13 instances of interspecific gene flow across the phylogeny, revealing a pattern of gene sharing that includes all of the major clades of Heliconius. “We found that gene flow between species, previously documented in a few closely related species, has been common across the group for millions of years,” notes Dr. Kozak, “including both existing and ancestral lineages.”

Intriguingly, when analyzing genes known to be involved in wing pattern and color, the authors found evidence for complex patterns of gene flow across several lineages, supporting previous reports and also identifying new cases of introgression. According to Dr. Kozak, “this provides further strong evidence that hybridization has been an important mechanism in the evolution of wing patterns, with sharing of relevant genes among many lineages allowing Heliconius to warn off avian predators.” This makes Heliconius one of only a few known examples of a lineage that has experienced adaptive introgression of multiple genes across several different species.

In the future, Dr. Kozak and colleagues plan to use what they have learned about Heliconius to model their phylogenies as networks, rather than trees, allowing them to better understand the evolution of other butterfly traits, “from spatial learning to diverse arrays of pheromones and defensive toxins.” In addition, they hope to relate their results to the geographic distribution of Heliconius: “We need to explore geographic variation and study both the incidence of hybridization (individuals of different species mating) and the levels of gene flow (genomic signature of mixing) between various populations, which so far has been done only for a few species.” This type of work is likely to pose a considerable challenge, however, as many species and populations of Heliconius are rare and found only in remote locations, necessitating considerable field work.

As comprehensive genomic data sets continue to expand, Dr. Kozak hopes to investigate other organisms to see how widespread such interspecific gene flow may be. “As always in evolutionary biology, we need to ask how much our conclusions apply to other taxa. Very few butterflies, or insects indeed, have so far been studied in this depth: it remains to be seen how much evidence for genome-wide admixture we can find throughout the extreme diversity of insects.”

###

Media Contact
Casey McGrath
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/gbe/evab099

Tags: BiodiversityBioinformaticsBiologyClimate ChangeDevelopmental/Reproductive BiologyEcology/EnvironmentEntomologyEvolutionGeneticsMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Navigating Young Adulthood: Autism Milestones and Supports

October 18, 2025

Empowering Female Nurses: Balancing Parenthood and Professional Growth

October 18, 2025

Fetal Heart Surgery: Insights from Comprehensive Review

October 18, 2025

Mesenchymal Stem Cell Media Aids High Glucose-Damaged HUVECs

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1260 shares
    Share 503 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    282 shares
    Share 113 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    118 shares
    Share 47 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Carbon Reduction Strategies with OCO and ICOS

Placental DNA Mutations, Stress, and Infant Emotions

Navigating Young Adulthood: Autism Milestones and Supports

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.