• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

How 100 billion nerve cells produce a clear thought or an action

Bioengineer by Bioengineer
January 17, 2015
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

We have approximately 100 billion nerve cells in our brains, all of which communicate with one another. Why do they lead to clear thoughts or purposeful actions instead of mere gibberish? The reason lies, among other things, in a small group of inhibitory nerve cells that can use the messenger GABA to curb the activity of other nerve cells. The neuroscientists Dr. Michael Strüber and Prof. Dr. Marlene Bartos from the University of Freiburg and their colleague from Vienna Prof. Dr. Peter Jonas have discovered that the distances between communicating cells play a part in the regulation of brain networks. The team presents this approach in the current issue of the journal Proceedings of the National Academy of Sciences (PNAS).

How 100 billion nerve cells produce a clear thought or an action

Intracellular filled hippocampal basket cells (magenta) and granule cells (green) with a schematic illustration of the distance-dependent inhibition. Photo Credit: Michael Strüber

GABA is released at special contact points, synapses, from a projection of the inhibitory cells that serves precisely this purpose, the axon. The messenger causes an electrical inhibitory current in the target cells. A special subtype of the GABA-releasing cells is the so-called basket cell. It is known to have a strongly inhibitory effect on brain circuits. A reason for this is the fact that basket cells have a long and widely branching axon, with which they can control hundreds to thousands of target cells scattered over a broad area. Up to now it was not clear whether all of these target cells are subject to the same inhibitory current or whether target cells that are more distant from the GABA-releasing basket cell are more difficult to keep under precise control.

With the help of the patch-clamp technique for measuring the inhibitory currents of individual cells, the team discovered that the farther away a target cell is, the smaller and longer are their inhibitory currents. In pharmacological and electrophysiological experiments and by means of detailed microscopic studies, the neuroscientists demonstrated that the basket cell axon with more distant target cells forms less synapses and that other proteins capable of sensing GABA are found in these synapses.

What could be the reason for such a complex structure? While this question cannot be answered in its entirety, the scientists investigated the consequences of a distance-dependent inhibition in computer simulations of neuronal networks. Contrary to expectations, the weakening inhibition enables the basket cells to precisely control the activity of a large number of nerve cells and thus to synchronize them. The synchronization of entire brain areas leads to rhythmic brain activities like gamma oscillations, which serve a crucial function in higher mental processes. The new approach of distance-dependent inhibition could be an important component in the regulation of brain networks that enables the brain to orchestrate the activity of 100 billion individual yet connected nerve cells to produce a thought.

Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg.

Share12Tweet8Share2ShareShareShare2

Related Posts

Redox biomarker could predict progression of epilepsy

October 5, 2016

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    885 shares
    Share 354 Tweet 221
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reelin: A Promising Protein for Gut Repair and Depression Treatment

FIU Cybersecurity Experts Unveil Midflight Defense Mechanism to Prevent Drone Hijacking

UBCO Study Reveals Sex Education Falls Short for 2SLGBTQIA+ Students

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.