• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, August 15, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hot OLEDs can ‘switch back’

Bioengineer by Bioengineer
January 15, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Anton Kirch, Axel Fischer, Matthias Liero, Jurgen Fuhrmann, Annegret Glitzky, Sebastian Reineke


It is well-known that LEDs and transistors should not be connected in parallel as slight differences in resistance can lead to imbalanced current flow. This effect gets even stronger if the devices heat up as their resistance changes with temperature. For organic LEDs (OLEDs), this is a big issue: Every large-area OLED lighting panel can be understood as a parallel connection of numerous individual tiny OLEDs. As a consequence, these devices show inhomogeneous light emission if they heat up. A phenomenon that has been observed by researchers as well as industrial companies in the last couple of years, is a saturation of brightness that occurs even though the total applied current is continuously increased. Now a team of researchers from TU Dresden (Chair of organic semiconductors at IAPP/cfaed, Prof. Sebastian Reineke) and the Weierstrass Institute Berlin (WIAS, deputy head of research group Partial Differential Equations, Dr. Annegret Glitzky) experimentally prove that OLEDs do not only saturate, they even show regions that are switched-back in brightness: Suddenly the OLED gets darker in a certain area although the total applied current is increased – clearly a counter-intuitive result. This so-called “switched-back” effect is directly related to the presence of a strong nonlinear electrothermal feedback in OLEDs that takes place upon heating up and which in turn induces negative differential resistance that makes the device prone to unstable operation.

The results have a strong impact on understanding long-term stability in applications with high brightness e.g. as they are found in the automotive sector. Here, OLEDs are now considered to replace LED technology for tail lights, signal lights, or brake lights due to their new design possibilities. One problem OLEDs are still facing are sudden-death phenomena. They are rarely described in literature due to their unpredictable and seemingly random occurrence. However, it is likely that the now proven switched-back regions are strongly related to such sudden-death phenomena. A better understanding of the OLED as a complex electrothermal system will, therefore, be essential to forecast device breakdown and to develop new strategies for better brightness uniformity and device stability. In the future, novel applications with ultra-high light intensity such as organic lasers will also benefit from exact knowledge about self-heating effects.

The cooperation between the two groups at IAPP and WIAS dates back to 2011. Since then, several joint publications about electrothermal feedback in organic semiconductor devices have been published. “The prediction of the switched-back regions actually goes back to 2014 when we got some first hints by a rather rudimentary simulation,” said Dr. Axel Fischer who is the corresponding author of this work and continues with “We then focused on creating an improved setup that would allow us to measure the effect for our lab-scale samples.”. The term “switched-back” is actually related to the current density that locally decreases in the OLED in contrast to the total current that still increases. As it is difficult to measure the local current density, a camera was used to detect the emission that corresponds to the local current flow. If there would be a decreasing brightness before the OLED degrades, it would be the proof of switched-back regions. Indeed, the experimentalists suddenly observed a decreasing luminance in the expected region of the active area just after the first negative differential resistance occurred. These experiments have been carried out and evaluated by Anton Kirch, who is currently a Ph.D. student at IAPP: “First, a region of negative differential resistance occurs and propagates through the device for increasing the supply current. At a certain point, they switch back regions that are distant to the electrodes and which do not have a sufficiently high power dissipation. One can imagine that these switched-back regions only ‘see’ the decreasing voltage of the OLED parts operating in the regime of negative differential resistance and do not know that the externally applied voltage still increases.”

To confirm the experimental results, the complex interplay between current and heat flow was studied numerically in a highly nonlinear system, taking the different layers of the OLED into account. Therefore, the mathematicians from the Weierstrass Institute Berlin created a simulation tool for solving the derived system of partial differential equations. “We had to introduce an advanced path following algorithm”, explains Dr. Matthias Liero, “to capture the behavior of the device within the bistable regime, i.e. when parts of the OLED operate in the regime of negative differential resistance”. After this was implemented, the numerical simulation was able to reproduce the experimental finding based on reasonable assumptions and parameters. Liero further outlines: “Frankly, we have been astonished about the qualitative and the quantitative agreement between simulation and experiment. The shape and occurrence of the switched-back region were calculated as found in the experiment.”. The group is now looking for further partners from science as well as from industry to transfer the results from lab-scale OLEDs to larger thin-film lighting panels and more complicated geometries.

Both groups want to continue their joint work on electrothermal feedback. The next challenges are to create new strategies to prevent switched-back regions in order to homogenize the luminance even upon self-heating. It will be the aim to create non-trivial solutions that explicitly take the non-linear nature of the problem into account. Furthermore, in-depth studies exploring the interdependency between the appearance of switched-back regions and sudden-death scenarios have been started.

###

Media Contact
Axel Fischer
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-019-0236-9

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

How quinine caused World War I (hyperbolic title alert) (video)

How quinine caused World War I (hyperbolic title alert) (video)

August 15, 2022
Image 1

NTU Singapore launches S$45 million center for innovative robotics technologies

August 15, 2022

Overcoming a major manufacturing constraint

August 12, 2022

A simple way of sculpting matter into complex shapes

August 12, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesZoology/Veterinary ScienceUniversity of WashingtonUrbanizationVaccinesWeather/StormsUrogenital SystemVirologyWeaponryViolence/CriminalsVirusVaccine

Recent Posts

  • The Faraday Institution and NREL sign MOU in support of US UK joint battery research
  • Sugar chain on cell surface directs cancer cells to die
  • Colorful solar panels could make the technology more attractive
  • Nuclear war would cause a global famine and kill billions, Rutgers-led study finds
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In