• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hopping bacteria

Bioengineer by Bioengineer
May 6, 2019
in Chemistry
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New look at behavior upends common assumptions about bacteria

IMAGE

Credit: Courtesy of the researchers

Current biological models assume that many bacteria spread in a run-and-tumble pattern of diffusion, based on behavior in liquid laboratory cultures. But new research from Princeton University shows the tiny organisms actually use a hopping motion to move among tight spots in natural surroundings like the human intestine. The research will be published in the journal Nature Communications, released from embargo on May 6. Sujit Datta, the lead researcher and an assistant professor at Princeton, said his team simulated the complex geometry of mucus in the gut using transparent materials to reach the findings. The observations led to a new model that is 10 times more accurate than previous models, according to Datta, and could help improve a wide range of medical and environmental technologies.

“People have been studying bacteria for more than 300 years,” Datta said. “The vast majority of those studies are in liquid cultures, or on plates, or in microfluidic channels, but in reality, most bacteria live in porous media. The bottom line here is that geometry matters.”

###

Support for the work was provided in part by the Project X Innovation Fund and the Andlinger Center for Energy and the Environment.

Media Contact
Sujit Datta
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10115-1

Tags: BacteriologyBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringEcology/EnvironmentHydrology/Water ResourcesMedicine/HealthMicrobiologyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

‘Rosetta Stone’ of Code Enables Scientists to Execute Fundamental Quantum Computing Operations

August 21, 2025
blank

Unnatural Base Pair Detects Epigenetic Cytosine Changes

August 21, 2025

Innovative Research Paves the Way for Greener, Faster Metal Production

August 21, 2025

Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

New Study Uncovers Key Genes That Suppress Blood Cancer Progression

Electron Flow Matching Advances Reaction Mechanism Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.