• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

HKUST’s meta-analysis shows SARS-CoV-2 variants unlikely to affect T cell responses

Bioengineer by Bioengineer
May 26, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: HKUST

In a new study, scientists at The Hong Kong University of Science and Technology (HKUST) have revealed that most T cell epitopes known to be targeted upon natural infection are seemingly unaffected by current SARS-CoV-2 variants.

In their latest research, the team compiled and analysed data from 18 immunological studies of T cell responses involving over 850 recovered COVID-19 patients from across four continents who are well-distributed in age, gender, disease severity and blood collection time. They demonstrated that T cells in these patients targeted fragments (epitopes) of almost all of the virus’ proteins, including the spike protein that is a main target of many existing vaccines. As an important finding, based on analysis of over 850,000 SARS-CoV-2 genetic sequences from around the world, most of these epitopes appeared to be unaffected by the current variants of concern.

“We focused specifically on recovered COVID-19 patients as their immune responses are representative of effective responses against the virus,” said Prof. Ahmed Abdul QUADEER, Research Assistant Professor from the Department of Electronic and Computer Engineering, who is the first author of the research.

“We believe this is good news, particularly for vaccines. In contrast to antibody responses which have been shown to be affected by variants, our analysis would suggest T cell responses may be relatively robust, assuming that vaccine responses mimic those of natural infection,” said Prof. Matthew MCKAY from the Departments of Electronic and Computer Engineering and Chemical and Biological Engineering, who co-led the research.

While revealing more than 700 T cell epitopes, the team’s analysis identified 20 specific epitopes–which they refer to as immunoprevalent–that induced T cell responses in multiple independent cohorts and in a large fraction of tested patients. Of these, five appeared highly immunoprevalent, registering T cell responses in at least four separate immunological studies.

“The identified immunoprevalent epitopes appear to represent parts of the virus that are commonly targeted by T cells in recovered COVID-19 patients,” added Prof. McKay. “It is possible, but subject to further experimental investigation, that targeting these epitopes may play a role in contributing to favourable disease outcomes.”

The compiled data has been integrated into a web platform, which the team plans to keep updated as more immunological studies of SARS-CoV-2 T cell epitopes are reported.

“The platform is an online resource for the global research community and complements ongoing research on understanding T cell responses against SARS-CoV-2. It serves to guide studies related to COVID-19 vaccines and diagnostics,” added Prof. Quadeer.

###

Their findings have just been published in the scientific journal Cell Reports Medicine.

Media Contact
Johnny Tam
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.xcrm.2021.100312

Tags: Immunology/Allergies/AsthmaMedicine/HealthVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Metaphor Comprehension in Kids with Autism

November 24, 2025

Vaccination’s Role in Preventing Long COVID: Review

November 24, 2025

Enhancing Gut Microbiota: RS2 and Arabinoxylan in PCOS

November 24, 2025

Tibial Nerve Techniques Enhance Diabetic Neuropathy Management

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Problem Formulation with Feedback-Integrated Prompts

Fuzzy Logic’s Role in Managing COVID-19 Outbreaks

Enhancing Metaphor Comprehension in Kids with Autism

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.