• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, August 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

HKUST scientists develop novel method to monitor molecular aggregation

Bioengineer by Bioengineer
January 11, 2019
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The Hong Kong University of Science and Technology


Chiral molecules are defined as molecules that are non-superimposable on their mirror image, much like that of left and right human hand bone structure. There are many examples of chiral molecules in nature, including proteins and deoxyribonucleic acid (DNA). The dynamic processes of these chiral molecules is highly significant to understanding their biological activity. Indeed, protein aggregation is associated with many pathological conditions, including Alzheimer’s disease which is caused by the build-up of beta-amyloid fragments within the brain over time. Thus, it is important to understand and observe such (chiral) molecular aggregation and conformation over time.

Currently available options for analysing molecular conformation include electron microscopy and nuclear magnetic resonance (NMR) spectroscopy. Both methods require sample extraction under harsh conditions, a time-consuming process that can damage the molecular conformation of the sample. The second limitation to these methods is that the ultimate result will only provide the conformation of the compound at a specific point in time.

This new method involves aggregation-annihilation circular dichroism (AACD) effect and a well-studied chiral molecule called 1,1′-binapthyl derivatives (BN). It was observed that the CD signals of the BN were annihilated after BN aggregates were formed, likely due to the conformational change of the 1,1′-binapthyl group during the aggregation process.

In their work, four BN-based chiral molecules (P-1 to P-4 respectively) were synthesized through simple Suzuki coupling reactions. Polymers with the “open” BN units showed clear signs of aggregation-annihilated chiral dichroism (AACD). When the BN units were locked, the annihilation is restrained. The polymers were first dissolved in an organic solvent, tetrahydrofuran (THF). The second step involved adding water, a poor solvent for the polymers, was gradually added to the solution, which led to aggregate formation. CD spectra of the different polymers were taken at different water fractions and analysed. This methodology allowed researchers to analyse the molecular aggregation process in real time.

A molecular dynamics (MD) simulation of the polymers was performed in THF and water to further examine the relationship between CD annihilation and conformational change. This model indicated that open P-1 showed a broad distribution of dihedral angle ? but locked P-3 showed a narrow distribution. From solution to aggregate, the ? in open polymers (P-1 and P-2) becomes more negative and part of the conformers relax from cisoid to transoid. The ? in locked polymers (P-3 and P-4) increases slightly and cisoid conformation is preserved throughout the aggregation process.

“The combination of MD simulation and analysis on the change of CD couplet intensity and wavelength splitting during the aggregation process is thus an appealing method of in-situ and real-time monitoring of the conformational change,” said HKUST’s Prof. Ben-Zhong TANG, who led this research.

“This is a far cheaper, simpler method of monitoring conformational changes in chiral macromolecules means that we can apply this method to understanding many biological processes more easily,” said Dr. Haoke ZHANG, a co-author of the paper.

###

Details of the methodology and their findings were published in the journal Nature Communications on November 23, 2018. (DOI: 10.1038/s41467-018-07299-3)

Media Contact
Jamie Wong
[email protected]
852-346-92512

Original Source

http://dx.doi.org/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-07299-3

Tags: BiochemistryChemistry/Physics/Materials SciencesMolecular PhysicsOpticsPolymer Chemistry
Share12Tweet7Share2ShareShareShare1

Related Posts

MFR in patients with prior COVID and no prior COVID

Reduced myocardial blood flow is new clue in how COVID-19 is impacting the heart

August 17, 2022
Brain organoid

Why we fit a mini brain with a mini cap

August 17, 2022

Navy dolphins wearing video cameras capture the sights and sounds as they hunt fish and even a sea snake

August 17, 2022

After climate-linked disasters, some US animal shelters experience a spike in dog and cat numbers for up to a year

August 17, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccineViolence/CriminalsWeaponryZoology/Veterinary ScienceVaccinesVehiclesUrbanizationVirologyVirusWeather/StormsUniversity of WashingtonUrogenital System

Recent Posts

  • New prenatal test can reduce time, cost of detecting chromosomal abnormalities
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day
  • Reduced myocardial blood flow is new clue in how COVID-19 is impacting the heart
  • Unconventional water sources may be the key to powering America’s lithium energy demands
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In