• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 30, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

HKUST researchers discover ‘hotspots’ of three-layered alternatively rotating circulation in South China Sea

Bioengineer by Bioengineer
June 17, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Prof. GAN Jianping, director of the Center for Ocean Research Hong Kong and Macau (CORE) at The Hong Kong University of Science and Technology (HKUST), carried out field observations and conducted numerical simulations in the South China Sea (SCS) recently and revealed the never-before-seen characteristics of the three-dimensional ocean motion in the SCS through geophysical fluid dynamic theory. The complex ocean circulation system controls the energy conversion and water mass transport in the SCS, subsequently affects the biogeochemical processes, carbon budget, marine ecological environment health, regional climate change, and the sustainable economic and social development in surrounding countries and regions, which accounts for about 22% of the world’s population. Studies on the SCS circulation and dynamics are regarded as the foundation and epitome of understanding the SCS.

Geographical location and bathymetry of the South China Sea

Credit: HKUST

A research team led by Prof. GAN Jianping, director of the Center for Ocean Research Hong Kong and Macau (CORE) at The Hong Kong University of Science and Technology (HKUST), carried out field observations and conducted numerical simulations in the South China Sea (SCS) recently and revealed the never-before-seen characteristics of the three-dimensional ocean motion in the SCS through geophysical fluid dynamic theory. The complex ocean circulation system controls the energy conversion and water mass transport in the SCS, subsequently affects the biogeochemical processes, carbon budget, marine ecological environment health, regional climate change, and the sustainable economic and social development in surrounding countries and regions, which accounts for about 22% of the world’s population. Studies on the SCS circulation and dynamics are regarded as the foundation and epitome of understanding the SCS.

In the past few decades, there has been growing global attention to ocean circulation research in the SCS. However, scientific understanding of the three-dimensional water movement in this region is still very limited, ambiguous, and sometimes even misunderstood. This is caused by the lack of observations, reliable numerical model, and the knowledge of the complicated physical processes in the SCS circulation.

Until recently, based on observations, numerical simulations, and geophysical fluid dynamics reasoning, a research team led by Prof. Gan, who is also Chair Professor at HKUST’s Department of Ocean Science and Department of Mathematics, validated that the SCS rotating circulation has a three-layered structure, where currents rotate counterclockwise, clockwise and clockwise in the upper, middle and bottom layers, respectively. The study also found that the three-layered rotating circulations are composed of the dynamically active ‘hotspots’ of intensified currents along the steep continental slope surrounding the deep basin, instead of an orderly structure in the entire region as previously conceived. Slope currents are mainly controlled by the combination effects of monsoon, Kuroshio intrusion, and the unique topography, and are constantly adjusted and regulated by the multiscale oceanic processes. The study demonstrated the three-dimensional structure and physical mechanism of the SCS circulation for the first time, and clarified previous misunderstanding of the water mass motion in this region. Based on these findings, Prof. Gan’s team created the WavyOcean, a 3D simulation and visualization system for ocean circulation and biogeochemical processes in the SCS, which is validated and constrained by both observations and dynamics reasoning.

Prof. Gan said, “Because of  failure in capturing the dynamic ‘hotspot’ in the marginal sea, almost all global models cannot accurately simulate the three-layer circulation structure and related physics in the South China Sea, even with the same spatial and temporal resolution. Therefore, compared with the open ocean, our understanding and simulation of the global marginal sea circulations, forced by multiple factors such as seafloor topography, water exchange through straits, and multi-scale dynamic processes, is more challenging than expected.”

“Observation is essential to ocean research. However, due to the strict spatial and temporal limitations of in-situ observations, it’s very difficult to understand the structure of ocean currents, especially for theoretical analysis of circulation dynamics. Numerical experiments or simulated ‘observations’ are crucial to ocean research, and an increasing amount of novel discoveries in ocean is now relying on numerical model that is rigorously validated by observations and geodynamic theory,” he added. As an expert in computational geophysical fluid dynamics, Prof. Gan believes that numerical simulation is not a coding game of mere input and output, but rather a process of constructing an “exquisite” scientific numerical experiment and observation. In addition to simulating and forecasting the real ocean, numerical ocean modeling is a major scientific tool for understanding ocean processes and phenomena and assisting in exploring the unknowns.

The research results were recently published in Nature Communications by the team led by Prof. Gan, in collaboration with researchers from the University of Macau, and Southern University of Science and Technology. The research was co-funded by the CORE, the Hong Kong RGC and the National Natural Science Foundation of China. The CORE is jointly established by Qingdao National Science and Technology Laboratory and Hong Kong University of Science and Technology.
 



Journal

Nature Communications

DOI

10.1038/s41467-022-29610-z

Article Title

Hotspots of the stokes rotating circulation in a large marginal sea

Article Publication Date

25-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Sample of cards used in the experiment

Clashes of inference and perspective explain why children sometimes lose the plot in conversation

June 30, 2022
Group Leader in Chemical Proteomics, Dr. Guillaume Médard, and his research group in the lab.

Shining some light on the obscure proteome

June 29, 2022

Romantic partners can influence each other’s beliefs and behaviors on climate change, new Yale study finds

June 29, 2022

An engaging leadership style may boost employee engagement

June 29, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceVirologyVirusVaccineViolence/CriminalsWeaponryUrogenital SystemUniversity of WashingtonUrbanizationVehiclesVaccines

Recent Posts

  • The art of getting DNA out of decades-old pickled snakes
  • Clashes of inference and perspective explain why children sometimes lose the plot in conversation
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers
  • New research: Up to 540,000 lives could be saved worldwide by targeting speed and other main areas
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....