• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Highly sensitive dopamine detector uses 2D materials

Bioengineer by Bioengineer
August 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Derrick Butler, Penn State

A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine is an important neurotransmitter that can be used to diagnose disorders such as Parkinson’s disease, Alzheimer’s disease and schizophrenia.

“If you can develop a very sensitive, yet simple-to-use and portable, detector that can identify a wide range of dopamine concentration, for instance in sweat, that could help in non-invasive monitoring of an individual’s health,” said Aida Ebrahimi, assistant professor of electrical engineering, Penn State, and a corresponding author on a paper published Aug. 7 in Science Advances.

Their work shows that by adding a small amount of manganese to a two-dimensional layered material called molybdenum disulfide, they can improve the sensitivity by many orders of magnitude compared to other reported results, while also achieving high specificity. Importantly, their detector is low-cost and flexible, and can detect dopamine in background media including buffer, serum and sweat, and in real-time.

“Regarding our method, electrochemical deposition is a new way of depositing these chemicals that is very simple and scalable,” said Mauricio Terrones, Verne M. Willaman Professor of Physics, Materials Science and Chemistry and the second corresponding author. “The air force is interested in these neurotransmitters that are makers of stress. I envision this as a wearable sensor.”

Humberto Terrones and his group, at RPI, performed the computational investigation that allowed them to explain how addition of manganese results in an improved response to dopamine. The experimental work was performed within the Center for Atomically Thin Multifunctional Coatings (ATOMIC) at Penn State.

“Combining the experimental results with computational studies proved to be very insightful, and I think we all learned much more throughout this project because of that,” said Derrick Butler, a co-lead author on the paper and doctoral student at Penn State. “Developing these materials and applying them in a way that could improve the health and well-being of others makes the work especially enjoyable and rewarding.”

His co-lead author, doctoral candidate Yu Lei, added, “One challenge is to develop a scalable method to bridge fundamental studies and practical applications. Our method is based on electrodeposition, which has been widely used in industry, thus providing a scalable route to functionalize MoS2 in a scalable way. Also, I believe this multidisciplinary team is the key to find the right way to functionalize MoS2 for ultrasensitive dopamine detection.”

In further work, the group hopes to find other material combinations to detect a variety of other biomarkers with the specificity of their current sensor. Creating such a “toolkit” combining experimental investigations with computational methods will lead to new materials with multifunctional capabilities. This might be useful beyond human health, for example, for detecting noxious gases, water contamination or biodefense agents.

“In future, we can envision a combined sensor/actuator that can detect the dopamine and provide therapy at the same time. The sensors can be integrated with miniaturized chips for integration of sensing, actuating, control and data processing,” Ebrahimi said.

###

In addition to Ebrahimi, Lei, Butler and the Terrones brothers, authors include Fu Zhang and Tomotaroh Granzier-Nakajiwa, former or current doctoral students at Penn State, and Kazinora Fujisawa, currently a post-doctoral scholar, Penn State. Their paper is titled “Single-Atom Doping of MoS2 with Manganese Enables Ultrasensitive Detection of Dopamine: Experimental and Computational Approach.”

National Science Foundation, IUCRC-ATOMIC Center and Ebrahimi’s Start-up fund provided support for this project.

Terrones can be contacted at [email protected], and Ebrahimi can be contacted at [email protected].

Media Contact
A’ndrea Elyse Messer
[email protected]

Tags: Chemistry/Physics/Materials SciencesDiagnosticsMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Kono Honored with American Physical Society’s Isakson Prize

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food Focus in Binge Eating: Training Limitations Revealed

Double Disadvantage: The Impact is Greater Than Twice as Severe

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.