• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

High pressure is key for better optical fibers

Bioengineer by Bioengineer
October 19, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yongjian Yang, et al., npj Computational Materials, September 17, 2020

Optical fiber data transmission can be significantly improved by producing the fibers, made of silica glass, under high pressure, researchers from Japan and the US report in the journal npj Computational Materials.

Using computer simulations, researchers at Hokkaido University, The Pennsylvania State University and their industry collaborators theoretically show that signal loss from silica glass fibers can be reduced by more than 50 percent, which could dramatically extend the distance data can be transmitted without the need for amplification.

“Improvements in silica glass, the most important material for optical communication, have stalled in recent years due to lack of understanding of the material on the atomic level,” says Associate Professor Madoka Ono of Hokkaido University’s Research Institute of Electronic Science (RIES). “Our findings can now help guide future physical experiments and production processes, though it will be technically challenging.”

Optical fibers have revolutionized high-bandwidth, long-distance communication all over the world. The cables carrying all that information are mainly made of fine threads of silica glass, slightly thicker than a human hair. The material is strong, flexible and very good at transmitting information, in the form of light, at low cost. But the data signal peters out before reaching its final destination due to light being scattered. Amplifiers and other tools are used to contain and relay the information before it scatters, ensuring it is delivered successfully. Scientists are seeking to reduce light scatter, called Rayleigh scattering, to help accelerate data transmission and move closer towards quantum communication.

Ono and her collaborators used multiple computational methods to predict what happens to the atomic structure of silica glass under high temperature and high pressure. They found large voids between silica atoms form when the glass is heated up and then cooled down, which is called quenching, under low pressure. But when this process occurs under 4 gigapascals (GPa), most of the large voids disappear and the glass takes on a much more uniform lattice structure.

Specifically, the models show that the glass goes under a physical transformation, and smaller rings of atoms are eliminated or “pruned” allowing larger rings to join more closely together. This helps to reduce the number of large voids and the average size of voids, which cause light scattering, and decrease signal loss by more than 50 percent.

The researchers suspect even greater improvements can be achieved using a slower cooling rate at higher pressure. The process could also be explored for other types of inorganic glass with similar structures. However, actually making glass fibers under such high pressures at an industrial scale is very difficult.

“Now that we know the ideal pressure, we hope this research will help spur the development of high-pressure manufacturing devices that can produce this ultra-transparent silica glass,” Ono says.

###

Madoka Ono is part of the Laboratory of Nanostructured Functional Materials, RIES at Hokkaido University. Her research focuses on the properties of non-organic and silica glass by both laboratory experiments and computational analyses.

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/high-pressure-is-key-for-better-optical-fibers/

Related Journal Article

http://dx.doi.org/10.1038/s41524-020-00408-1

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsOpticsTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Febuxostat Generic vs. Feburic®: Crossover Study Insights

Febuxostat Generic vs. Feburic®: Crossover Study Insights

October 6, 2025

Depression in Older Aortic Stenosis Patients: Insights Unveiled

October 6, 2025

Ant-Sheltered Tardigrades: A Unique Survival Strategy

October 6, 2025

ACOXL-AS1 Drives Pan-Cancer Growth, Especially Uterine

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Febuxostat Generic vs. Feburic®: Crossover Study Insights

Depression in Older Aortic Stenosis Patients: Insights Unveiled

Ant-Sheltered Tardigrades: A Unique Survival Strategy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.