• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 16, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High-flux table-top source for femtosecond hard X-ray pulses

Bioengineer by Bioengineer
January 7, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: MBI

Femtosecond hard X-ray pulses are an important tool for unraveling structure changes of condensed matter on atomic length and time scales. A novel laser-driven X-ray source provides femtosecond copper Kα pulses at a 1 kHz repetition rate with an unprecedented flux of some 10^12 X-ray photons per second.

Elementary processes in physics, chemistry, and biology are connected with changes of the atomic or molecular structure on a femtosecond time scale (1 femtosecond (fs) = 10^-15 seconds). Ultrafast X-ray methods hold strong potential for following structure changes in space and time and generate ‘movies’ of the motions of electrons, atoms and molecules. This perspective has resulted in a strong demand for femtosecond hard X-ray pulses to be applied in X-ray scattering and spectroscopy.

There are two main approaches to generate ultrashort hard X-ray pulses. The first are sources based on large-scale electron accelerators and undulators in which femtosecond electron bunches radiate bright X-ray pulses. The second are small-frame laboratory sources driven by intense femtosecond optical lasers. Here, electron acceleration occurs in the strong electric field of an optical pulse and X-ray pulses are generated by collisional interaction of such electrons with atoms of a metal target, similar to a conventional X-ray tube.

Researchers at the Max Born Institute (MBI) in Berlin have now accomplished a breakthrough in table-top generation of femtosecond X-ray pulses by demonstrating a stable pulse train at kilohertz repetition rate with a total flux of some 10^12 X-ray photons per second. As they report in Optics Letters, the combination of a novel optical driver providing femtosecond mid-infrared pulses around a 5 μm (5000 nm) wavelength with a metallic tape target in a transmission geometry allows for generating hard X-ray pulses at a wavelength of 0.154 nm with very high efficiency.

The optical driver is based on optical parametric chirped pulse amplification (OPCPA) and provides 80-fs pulses at a central wavelength of 5 μm with an energy of 3 mJ and a repetition rate of 1 kHz. To generate X-ray pulses, the mid-infrared pulses are tightly focused onto a thin copper target (Fig 1). In an optical cycle of the optical field, electrons are extracted from the copper tape, accelerated in vacuum and steered back to the target. Electrons with a kinetic energy of up to 100 keV reenter the target and generate bright copper Kα pulses at a wavelength of 0.154 nm, accompanied by spectrally broad bremsstrahlung. The longer optical cycle of the mid-infrared pulses compared to pulses at shorter optical wavelengths results in longer acceleration times of the electrons, higher kinetic energies, and eventually higher efficiency in X-ray generation (Fig. 2).

The new table-top X-ray source reaches an average number of Cu-Kα photons up to 1.5×10^9 photons per pulse in the full solid angle or 1.5×10^12 photons per second (blue dots in Fig 2c). This photon flux is 30 times higher than from commonly used table-top X-ray sources driven by Ti:sapphire lasers at the central wavelength of 0.8 μm (black dots in Fig 2c). Such source parameters open exciting perspectives for investigating ultrafast structure changes in condensed matter by time-resolved X-ray scattering.

###

Media Contact
Azize Koç
[email protected]

Original Source

https://mbi-berlin.de/research/highlights/details/high-flux-table-top-source-for-femtosecond-hard-x-ray-pulses

Related Journal Article

http://dx.doi.org/10.1364/OL.409522

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021
IMAGE

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021

Researchers trace geologic origins of Gulf of Mexico ‘super basin’ success

January 15, 2021
Next Post
IMAGE

Scientists developing new solutions for honeybee colony collapse

IMAGE

Stem cell therapy corrects skull, brain function in mouse model of childhood disorder

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Ecology/EnvironmentInfectious/Emerging DiseasesPublic HealthMedicine/HealthCell BiologycancerClimate ChangeGeneticsMaterialsChemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceBiology

Recent Posts

  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Nanodiamonds feel the heat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In