• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High efficiency, salt resistance and high strength desalination achieved with new Janus sponge-like hydrogel solar evaporator

Bioengineer by Bioengineer
May 16, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the face of increasing global scarcity of freshwater resources, desalination is considered one of the most effective ways to alleviate this problem. However, it does come with a catch—efficient and low-cost evaporation materials are key to achieving large-scale applications.

SCHEMATIC DIAGRAM OF THE DESALINATION AND SALT RESISTANCE MECHANISM OF THIS JANUS SPONGE-LIKE HYDROGEL SOLAR EVAPORATOR

Credit: AQIANG CHU

In the face of increasing global scarcity of freshwater resources, desalination is considered one of the most effective ways to alleviate this problem. However, it does come with a catch—efficient and low-cost evaporation materials are key to achieving large-scale applications.

Hydrogels present a promising opportunity, yet conventional uses of these in interfacial solar evaporators still lack the ability to satisfy the trade-off for high evaporation rate, salt resistance and durable mechanical properties.

Therefore, most traditional hydrogel materials are only suitable for low-salinity brine, far from the requirements of long-term evaporation and treatment of industrial high-salinity wastewater. It has been demonstrated that the salt resistance of hydrogels can be enhanced by constructing interpenetrating 3D macropore structure. Nonetheless, rapid water transport and high water content can lead to increased conductive heat loss. This problem can be solved by further designing the Janus structure. Furthermore, although various methods for creating such structures exist, they are often complex and lack surface stability.

To that end, a team of researchers from the School of Chemical Engineering and Technology at Hebei University of Technology in Tianjin, China, introduced hydrophobic fumed nano-silica aerogel (SA) into the hydrogel production process. The ultra-lightweight and super-hydrophobic properties of SA enable it to spontaneously migrate and aggregate to the upper region of the hydrogel during the gelation process, forming a Janus structure.

“We know that the regulation of pore structure  can also balance the problem of increased heat loss caused by the high salt resistance of the sponge-like hydrogel,” explained Aqiang Chu, lead author of the study published in the KeAi journal Green Energy & Environment. “Consequently, we incorporated agar (AG) to enhance the comprehensive performance of hydrogel evaporators.”

Notably, AG has a thickening function, which in this case stabilizes the bubble structure formed during the foaming process, and thus help regulate the pore structure of the hydrogel.

“The large number of hydroxyl groups on the AG chain can at once reduce the enthalpy of water evaporation by interacting with water and forming ether bonds with polyvinyl alcohol to form a robust cross-linked network, contributing to improved mechanical properties,” Chu explained further.

“Coupled with the low cost and environmental friendliness of these preparation materials, our Janus dual-network sponge-like hydrogel solar evaporator shows great potential for practical applications in the field of interfacial solar evaporation,” added corresponding author Hao Li.

###

Contact the corresponding author: Hao Li, [email protected]

 

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).

 



Journal

Green Energy & Environment

DOI

10.1016/j.gee.2023.04.003

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Biomass-enhanced Janus sponge-like hydrogel with salt resistance and high strength for efficient solar desalination

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

August 28, 2025
Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Semaglutide and Tirzepatide Boost Weight Loss Results

Volumetric Amide-Proton Transfer Imaging Differentiates Pediatric Gliomas

Lactylation Risk Signature Unveiled in Prostate Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.