• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High-brightness source of coherent light spanning from the UV to THz

Bioengineer by Bioengineer
December 14, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©ICFO/L.Maidment, U. Elu & J. Biegert.

Analytical optical methods are vital to our modern society as they permit the fast and secure identification of substances within solids, liquids or gases. These methods rely on light interacting with each of these substances differently at different parts of the optical spectrum. For instance, the ultraviolet range of the spectrum can directly access electronic transitions inside a substance while the terahertz is very sensitive to molecular vibrations.

Throughout the years many techniques have been developed to achieve hyperspectral spectroscopy and imaging, allowing scientists to observe the behavior of, for example, molecules when they fold, rotate or vibrate in order to understand the identification of cancer markers, greenhouse gases, pollutants or even substances that could be harmful to us. These ultrasensitive techniques have proven to be very useful in applications related to food inspection, biochemical sensing or even in cultural heritage, to investigate the structure of the materials used for ancient objects, paintings or sculptures.

A standing challenge has been the absence of compact sources that cover such large spectral range with sufficient brightness. Synchrotrons provide the spectral coverage, but they lack the temporal coherence of lasers, and such sources are available only in large-scale user facilities.

Now, in a recent study published in Nature Photonics, an international team of researchers from ICFO, the Max-Planck Institute for the Science of Light, the Kuban State University, and the Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, led by ICREA Prof. at ICFO Jens Biegert, report on a compact high-brightness mid-IR-driven source combining a gas-filled anti-resonant-ring photonic crystal fiber with a novel nonlinear-crystal. The table top source provides a seven-octave coherent spectrum from 340 nm to 40,000 nm with spectral brightness 2-5 orders of magnitude higher than one of the brightest Synchrotron facilities.

Future research will leverage the few-cycle pulse duration of the source for the time-domain analysis of substances and materials, thus opening new opportunities for multimodal measurement approaches in areas such as molecular spectroscopy, physical chemistry or solid-state physics, to name a few.

###

LINKS

Reference article: Ugaitz Elu, Luke Maidment, Lenard Vamos, Francesco Tani, David Novoa, Michael H. Frosz, Valeriy Badikov, Dmitrii Badikov, Valentin Petrov, Philip St. J. Russell and Jens Biegert, Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nature Photonics, 2020. DOI: 10.1038/s41566-020-00735-1

Link to the paper: https://www.nature.com/articles/s41566-020-00735-1

Link to the research group led by ICREA Prof. at ICFO Jens Biegert: https://www.icfo.eu/lang/research/groups/groups-details?group_id=25

Link to the Max-Planck Institute for Science and Light: https://mpl.mpg.de/

Link to the Kuban State University: https://www.kubsu.ru/en/

Link to the Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy: https://mbi-berlin.de/

Media Contact
Alina Hirschmann
[email protected]

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Create Algae-Based Biochar Nanoreactor to Combat Persistent PFAS Pollution

Researchers Create Algae-Based Biochar Nanoreactor to Combat Persistent PFAS Pollution

February 4, 2026
Scientists Confirm Vast Reserves of Freshwater Beneath the Ocean Floor for the First Time

Scientists Confirm Vast Reserves of Freshwater Beneath the Ocean Floor for the First Time

February 4, 2026

Revealing “Hidden” Cellular States: A Novel Physics-Based Method for Label-Free Cancer Cell Phenotyping

February 4, 2026

Rydberg Atomic Medium Enables Optical Readout Below Shot-Noise Limit

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IRF5’s Role in Emphysema via NLRP3 and Ly6C Cells

Free Halide Ions Enable Switchable Photoluminescence

Geriatric In-Home Deaths: Insights from Autopsy Findings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.