• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

HHS awards major funding award to WFIRM

Bioengineer by Bioengineer
October 8, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Lung-on-a-chip technology used to study toxic agents, develop treatments

IMAGE

Credit: WFIRM


WINSTON-SALEM, NC, – Oct. 8, 2019 – The Wake Forest Institute for Regenerative Medicine (WFIRM) is the recipient of a major research funding award from the U.S. Department of Health and Human Services (HHS) to support its lung-on-a-chip technology as a model to develop chemical injury treatments.

The five-year $24 million program has been approved with an initial contracting commitment of $13.5 million for the first 2 years.

Specifically, the funding from the Biomedical Advanced Research and Development Authority (BARDA), part of the HHS Office of the Assistant Secretary for Preparedness and Response, awarded over a five-year period, will validate how WFIRM’s lung-on-a-chip technology works in modeling the effects of chlorine gas ¬- deemed a potential national security threat – on human lungs and to develop treatments.

Currently, the study of respiratory health, disease and biomedical interventions is primarily performed in animal models or 2D cell culture models using human or animal cells. This funding will help the WFIRM research team advance the development of its micro-tissue engineered lung organ tissue equivalent platform. This model can be engineered to reflect both normal and diseased tissue and includes innate immune system responsiveness, and accurate and reproducible response to drugs and toxins.

“Our lung-on-a-chip technology has grown out of our body-on-a-chip research, a system of miniature human organs created in the laboratory that can be used to further our understanding of the effects of inhaled chlorine gas and other toxins, as well as potential treatments,” said WFIRM Director, Anthony Atala, M.D.

WFIRM experts in regenerative medicine will work with Precision Medicine colleagues with expertise in genomics to identify the effects of chlorine gas and other toxic agents on the lungs and to determine the usefulness of the organoid in developing treatments for the resulting lung injuries.

According to BARDA, chlorine gas was used as a weapon during World War I and has been used repeatedly during the ongoing Syrian civil war. In addition, the amount of chlorine manufactured, along with its ready availability, makes this chemical a potential national security threat to the United States. Further, chlorine is one of the most-used industrial gases in the United States and causes multiple deaths and injuries due to accidents. In 2005, a train accident in Graniteville, South Carolina caused a tank car containing chlorine gas to leak, causing nine deaths and at least 250 injuries.

How Lung-on-a-Platform Works

The lung-on-a-chip platform is part of WFIRM’s overall Body-on-a-Chip program, a miniaturized system of human organs that can model the body’s response to harmful agents, can test the effects of new agents during drug discovery, or can help to develop potential therapies. The system can also be used for personalized medicine; for example, it can screen chemotherapy agents on a patient’s own cancer, so the most effective treatment can be given from the start. The Body-on-a-chip system overcomes the substantial limitations of animal models and 2D cell culture models for studying mechanisms of disease and treatment efficacy.

To create the system, human cells are used to create tiny 3D organ-like structures called tissue equivalents, that mimic the function of the heart, liver, lung, blood vessels, etc. Placed on a 2-inch chip, these structures are connected to a system of fluid channels and sensors to provide online monitoring of individual organs and the overall organ system. The circulating blood substitute keeps the cells alive and can be used to introduce chemical or biological agents, as well as potential therapies, into the system. Hollow channels automatically guide toxins or therapies that are being evaluated from one tissue to the next, and sensors measure real-time temperature, oxygen levels, pH and other factors.

“We look forward to pursuing the long-term goal of this research with BARDA, which is to reduce the overall burden of in vivo testing in the development and management of products for human clinical use and to speed up the development of treatments,” Atala said.

###

Media Contact: Bonnie Davis, [email protected], 336-713-1597(o) or 336-493-6184 (m).

About WFIRM

The Wake Forest Institute for Regenerative Medicine is recognized as an international leader in translating scientific discovery into clinical therapies, with many world firsts, including the development and implantation of the first engineered organ in a patient. More than 450 scientists collaborate on regenerative medicine research at the institute, the largest in the world, working on more than 40 different tissues and organs. WFIRM has led the world in clinical scale tissue engineering and a number of the basic principles of tissue engineering were first developed at the institute. WFIRM researchers have successfully engineered replacement tissues and organs in all four categories – flat structures, tubular tissues, hollow organs and solid organs – and nine different cell/tissue therapies, such as skin, urethras, cartilage, bladders, muscle, and vaginal organs have been successfully implanted into human patients.

About HHS, ASPR, and BARDA

HHS works to enhance and protect the health and well-being of all Americans, providing for effective health and human services and fostering advances in medicine, public health, and social services. The mission of the Office of the Assistant Secretary for Preparedness and Response (ASPR) is to save lives and protect Americans from 21st century health security threats. Within ASPR, BARDA invests in the advanced research and development, acquisition, and manufacturing of medical countermeasures – vaccines, drugs, therapeutics, devices, diagnostic tools, and non-pharmaceutical products needed to combat health security threats. For more about ASPR and BARDA, visit http://www.phe.gov/aspr, and to learn more about partnering with BARDA, visit http://www.medicalcountermeasures.gov.

Media Contact
Bonnie Davis
[email protected]
336-713-1597

Original Source

https://newsroom.wakehealth.edu/News-Releases/2019/10/HHS-Awards-Major-Funding-Award-to-WFIRM

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologycancerChemical/Biological WeaponsChemistry/Physics/Materials SciencesGrants/FundingPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Rapid Color-Changing Sensor Detects Toxic Gases Instantly

Rapid Color-Changing Sensor Detects Toxic Gases Instantly

August 7, 2025
blank

Designing Shape-Selective Macrocycles for Humid CO2 Capture

August 7, 2025

Invisible Material Poised to Transform Smart Technology

August 7, 2025

Room-Temperature Quantum Freezing Achieved

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    48 shares
    Share 19 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Traits of Enterocytozoon bieneusi in Hebei Cattle

LiNiO2 Nanosheets: A New Cathode for Lithium-Ion Batteries

How Behavior Patterns Predict Teen Substance Use

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.