• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Hemp ‘goes hot’ due to genetics, not growing conditions

Bioengineer by Bioengineer
January 30, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Justin James Muir/Cornell University

ITHACA, N.Y. – As the hemp industry grows, producers face the risk of cultivating a crop that can become unusable – and illegal – if it develops too much of the psychoactive chemical THC. Cornell University researchers have determined that a hemp plant’s propensity to ‘go hot’ – become too high in THC – is determined by genetics, not as a stress response to growing conditions, contrary to popular belief.

“[People thought] there was something about how the farmer grew the plant, something about the soil, the weather got too hot, his field was droughted, something went wrong with the growing conditions,” said Larry Smart, horticulture professor and senior author of the study. “But our evidence from this paper is that fields go hot because of genetics, not because of environmental conditions.”

Smart and his team conducted field trials at two sites, studying the genetics and chemistry of 217 hemp plants. They found that differences in growing conditions between the sites had no significant influence on which chemicals the plants produced. But when they compared the CBD (cannabidiol) and THC levels of each of the plants against their genomes, they found very high correlation between their genetics and the chemicals they produced.

Jacob Toth, first author of the paper and a doctoral student in Smart’s lab, developed a molecular diagnostic to demonstrate that the hemp plants in the study fell into one of three genetic categories: plants with two THC-producing genes; plants with two CBD-producing genes; or plants with one gene each for CBD and THC.

To minimize the risk of plants going hot, hemp growers ideally want plants with two CBD-producing genes.

While conducting the research, the team also discovered that as many as two-thirds of the seeds they obtained of one hemp variety – which were all supposed to be low-THC hemp – produced THC above legal limits.

The researchers hope their work will help address this problem by providing breeders with easy-to-use genetic markers that can be utilized much earlier on seedlings and both sexes of plants.

The study was published in Global Change Biology-Bioenergy.

###

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Media Contact
Lindsey Hadlock
[email protected]
607-269-6911

Original Source

http://news.cornell.edu/stories/2020/01/genetics-not-field-conditions-makes-hemp-go-hot

Related Journal Article

http://dx.doi.org/10.1111/gcbb.12667

Tags: AgricultureGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Island reptiles risk extinction before scientific study, warns global review

November 6, 2025
Revamping Genome-Wide Metabolic Model for Streptococcus suis

Revamping Genome-Wide Metabolic Model for Streptococcus suis

November 6, 2025

Commonly Used Pesticides Linked to Reduced Sperm Count

November 5, 2025

Gender, Surgery Side Influence Epilepsy Surgery Outcomes

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Causes and Solutions for Same-Day Surgery Cancellations

Black Soldier Fly Larvae: Innovations in Sustainable Waste Management

Targeting FSP1 Induces Ferroptosis in Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.