• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Harnessing the power of gallium nitride and machine learning

Bioengineer by Bioengineer
April 27, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

$2.5 million project will develop compact power conversion systems

IMAGE

Credit: University of Houston

Military installations, especially on ships and aircraft, require robust power electronics systems to operate radar and other equipment, but there is limited space onboard. Researchers from the University of Houston will use a $2.5 million grant from the U.S. Department of Defense to develop compact electronic power systems to address the issue.

Harish Krishnamoorthy, assistant professor of electrical and computer engineering and principal investigator for the project, said he will focus on developing power converters using gallium nitride (GaN) devices, capable of quickly storing and discharging energy to operate the radar systems.

He is working with co-PI Kaushik Rajashekara, professor of electrical and computer engineering, and Tagore Technology, a semiconductor company based in Arlington Heights, Ill. The work has potential commercial applications, in addition to military use, he said.

Currently, radar systems require large capacitors, which store energy and provide bursts of power to operate the systems. The electrolytic capacitors also have relatively short lifespans, Krishnamoorthy said.

GaN technology offers the promise of more efficient and compact power conversion than silicon-based technology. That’s because they are wide bandgap semiconductors. GaN devices can be turned on and off far more quickly – over 10 times as quickly as silicon devices, Krishnamoorthy said. The resulting higher operating frequency allows passive components in the circuit – including capacitors and inductors – to be designed at much smaller dimensions.

But there are still drawbacks to GaN devices. Noise – electromagnetic interference, or EMI – can affect the precision of radar systems, since the devices work at such high speeds. Part of Krishnamoorthy’s project involves designing a system where converters can contain the noise, allowing the radar system to operate unimpeded.

He also will use machine learning to predict the lifespan of GaN devices, as well as of circuits employing these devices. The use of GaN technology in power applications is relatively new, and assessing how long they will continue to operate in a circuit remains a challenge.

“We don’t know how long these GaN devices will last in practical applications, because they’ve only been used for a few years,” Krishnamoorthy said. “That’s a concern for industry.”

###

Media Contact
Jeannie Kever
[email protected]

Original Source

https://uh.edu/news-events/stories/2020/april-2020/04272020krishnamoorthy-hiper.php

Tags: Electrical Engineering/ElectronicsMaterialsSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

November 8, 2025

Global Prevalence of Chronic Kidney Disease More Than Doubles Since 1990, Impacting Nearly 800 Million People

November 8, 2025

Chronic Kidney Disease Rises to Ninth Leading Cause of Death, New Data Reveals

November 8, 2025

New App Assesses Impaired Vigilance Through Digital Tools

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Participant Insights from the Navigate-Kidney Study on Kidney Failure Care Intervention

Global Prevalence of Chronic Kidney Disease More Than Doubles Since 1990, Impacting Nearly 800 Million People

Chronic Kidney Disease Rises to Ninth Leading Cause of Death, New Data Reveals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.