• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 29, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hair follicles heal blisters at personal cost

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of scientists has shown that the healing of skin blisters is driven by hair follicle stem cells, which delay their own development in the process.

The healing process of the tissues in the human body is particularly well-studied in skin, especially as skin serves as a layer of protection from the environment. However, there remain some specific types of skin injuries where the healing process is not well understood.

A team of scientists from Japan and Italy, including Associate Professor Ken Natsuga from the Graduate School of Medicine at Hokkaido University, have used models of skin blisters to explore the effects of injury on developing skin tissue. Their discoveries were published in the journal EMBO Reports.

The scientists performed their tests on mice which had artificially generated epidermal detachment, or skin blisters. They investigated the healing process by monitoring gene expressions and cell proliferation, tracing cell lineages, and employing mathematical models.

The team found that a type of stem cells (SCs), hair follicle stem cells (HFSCs), play an outsize role in blister healing. The HFSCs are mainly responsible for the healing of subepidermal blisters, from the base of the wound. The wound-healing activity of HFSCs is accompanied by delayed growth of hair follicles in the regenerated skin tissue. When HFSCs are reduced, another group of SCs, the interfollicular epidermal stem cells (IFESCs), can also contribute to healing, but only from the blister margins. They also confirmed that blister healing was affected by the shapes of keratinocytes, the primary skin cells, although the mechanism by which the shapes affect healing is still unclear.

The findings have revealed the balance between wound healing and development in skin, indicating many possibilities for the treatment of skin blistering in humans. The models used in this study may themselves be used for the development of new therapies for blister healing. The role of sweat glands could not be investigated, as mice lack sweat glands, and the role of mesenchymal cells, which have previously been shown to be involved in healing of skin wounds, was not examined. Future work will focus on these aspects.

“Our findings of the healing processes pave the way for tailored therapeutic interventions for epidermolysis bullosa, pemphigoid diseases and other blistering diseases,” says Ken Natsuga.

###

The paper is dedicated to the late Professor Hiroshi Shimizu, a co-author of the paper, who passed away while the paper was in review.

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/hair-follicles-heal-blisters-at-personal-cost/

Related Journal Article

http://dx.doi.org/10.15252/embr.20205088

Tags: BiochemistryCell BiologyDermatologyMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Wavelength-Controlled Rotation in Light-Powered Molecular Motor

January 28, 2026
blank

Dual-Atom Catalyst Enhances Low-Temperature Propane Combustion

January 26, 2026

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electrographic Cue Reactivity Aligns with Accumbens DBS

Scalable In-Situ Fabrication of Multimodal E-Skin

Adapting PEERS® Program for Autistic Young Adults in Iran

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 72 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.