• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

GW study will examine molecular mechanisms of male bias in autism

Bioengineer by Bioengineer
July 19, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON (July 19, 2018) — Neurodevelopmental disorders such as autism spectrum disorder and intellectual disability are more prevalent in males than females. However, the underlying molecular mechanisms of why this difference occurs remain a mystery.

With more than $2 million from the National Institute of Neurological Disorders and Stroke at the National Institutes of Health, researchers at the George Washington University (GW) will study the CC2D1A gene and its role in the development of autism in males versus females. Chiara Manzini, PhD, assistant professor of pharmacology and physiology at the GW School of Medicine and Health Sciences and the GW Institute for Neuroscience, is leading the study into finding what makes male more susceptible to autism and intellectual disability.

"If there are fundamental differences that make males more susceptible to autism, this can be targeted by therapy development. It is possible that the drugs that we need to use for girls are different," explained Manzini, who has been researching this difference for the past five years. "This is a really big issue that the NIH has raised recently where a lot of studies or clinical trials were being done on males. When the same diseases were studied in females with the same drugs, the effect was different."

Based on previous research finding mutations in the CC2D1A gene, Manzini hypothesizes that the gene controls male-specific function of the cAMP response element binding (CREB) protein in the developing and adult hippocampus. The CREB protein can increase or decrease the expression of specific genes. As a result, the team believes that disrupted CREB function in males leads to altered plasticity and cognitive and affective phenotypes following loss of CC2D1A.

"We really hope to find this molecular switch that makes this deficit only present in boys to help us understand why girls are protected," said Manzini. "On the flip side, females are diagnosed more frequently with Alzheimer's. It's the opposite end of the human lifespan, but it's a cognitive disorder."

It's possible, she explained, that the same mechanisms that make males more susceptible to cognitive disorders earlier in life, make females susceptible later in life.

Manzini is collaborating with Peter Nemes, PhD, associate professor of chemistry and biochemistry at the University of Maryland, College Park and an expert in mass spectrometry. His expertise will help identify the proteins regulated by CC2D1A and CREB and help researchers understand the molecular differences between males and females when it comes to neurodevelopmental disorders.

###

Media: To interview Dr. Manzini, please contact Ashley Rizzardo at [email protected] or 202-994-8679.

About the GW School of Medicine and Health Sciences: Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

Media Contact

Ashley Rizzardo
[email protected]
202-994-8679
@GWtweets

http://www.gwu.edu

https://smhs.gwu.edu/news/gw-study-will-examine-molecular-mechanisms-male-bias-autism

Share12Tweet8Share2ShareShareShare2

Related Posts

SHAT2 Gene Enhances Seed Shattering and Quality Traits in Rice

SHAT2 Gene Enhances Seed Shattering and Quality Traits in Rice

September 19, 2025
Marine Bathyarchaeia Convert Carbon into Unique Lipids

Marine Bathyarchaeia Convert Carbon into Unique Lipids

September 19, 2025

Broad-Range Phages Thrive Across Diverse Ecosystems

September 19, 2025

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Urine NGAL Predicts Kidney Therapy Duration in Children

Bridging Ancient Wisdom and Modern Science: Exploring ‘Food and Medicine Homology’ for Innovative Advances in Cancer Care

Advancing MRI Imaging: The Role of Coordination Clusters as Contrast Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.