• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Gutters teem with inconspicuous life

Bioengineer by Bioengineer
October 13, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the BOREA Biology of Aquatic Organisms and Ecosystems research unit (CNRS / MNHN / IRD / UPMC / University of Caen / Université des Antilles)–together with a colleague from the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany–have shown that Parisian street gutters are oases of microscopic life, home to microalgae, fungi, sponges, and mollusks[1]. Grouped into communities, these microorganisms may help clean rainwater and urban waste by decomposing solid debris and pollutants such as exhaust fumes and engine oil. A deeper understanding of the role and composition of these communities could help elucidate the services rendered by gutter ecosystems. Published in the ISME Journal on October 13, 2017, the researchers' findings are the first to reveal the unsuspected biodiversity of microscopic life in Paris city streets.

Scientists from the BOREA research unit first suspected the presence of microalgae in Paris streets after noting the characteristic green or brown color of gutter water and observing the presence of bubbles, which are the result of photosynthetic activity. The researchers analyzed different samples of non-potable water from the Seine, the Ourcq Canal, curbside water outlets (for street cleaning), and street gutters to identify the microorganisms they harbored.[2]

The team identified 6,900 potential species[3] of eukaryotes[4] in the hundred or so samples of water and biofilms (consisting of communities of microorganisms) collected from every district of Paris. Diatomaceous microalgae make up a large part of this biodiversity. Also identified were other unicellular eukaryotes (i.e., amoebas, alveolates, and Rhizaria), fungi (including some known decomposers), sponges, and mollusks. Even more astonishingly, analyses revealed that nearly 70% of these species were not found in the non-potable water sources. The profiles of these microbiological communities vary greatly between sampling sites, suggesting their origin may be associated with human activities or that the microorganisms have adapted to their specific urban environment.

Hence, street gutters and the microscopic life they host appear to constitute a unique ecosystem with ecological roles still to be discovered. What are these microorganisms exactly? What do they do? Do they help clean wastewater, like tiny roadside treatment plants? How did they adapt to city life? Should they be monitored? These are all questions the researchers hope to answer by studying other kinds of life–such as prokaryotes, organisms devoid of cell nuclei, like bacteria –over longer periods of time, and even in different cities.

###

Other visuals are available: http://phototheque.cnrs.fr/p/491-1-1-0/

[1] This study was conducted within the scope of a CNRS PEPS (Pluridisciplinary Exploratory Projects) scheme.

[2] In Paris, non-potable water–for street cleaning or other purposes–is pumped from three stations (two drawing water from the Seine and the third from the Ourcq Canal). This water is stored in seven reservoirs before being distributed to the gutter network.

[3] The microorganisms were specifically categorized by operational taxonomic unit (OTU). Each OTU groups together individuals having close phylogenetic relationships.

[4] Eukaryotes are uni- or multicellular organisms with cell nuclei and organelles, unlike bacteria and archaea.

Media Contact

Alexiane Agullo
[email protected]
33-144-964-390

http://www.cnrs.fr

http://www2.cnrs.fr/en/2999.htm

Related Journal Article

http://dx.doi.org/10.1038/ismej.2017.166

Share12Tweet8Share2ShareShareShare2

Related Posts

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025
Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1227 shares
    Share 490 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeted T Cell Receptor Sequences Generated Conditioned

Transformers Meet State-Space Models: A Recurring Revolution

Hyaluronan Focus in Septic Shock and Pancreatitis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.