• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, May 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gut pathogens thrive on body’s tissue-repair mechanism

Bioengineer by Bioengineer
September 18, 2016
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Andreas Bäumler and his team discovered how pathogens manipulate the intestinal environment to favor their own growth.
Andreas Bäumler and his team discovered how pathogens manipulate the intestinal environment to favor their own growth.

Why do some foodborne bacteria make us sick? A paper published Sept. 16 in the journal Science has found that pathogens in the intestinal tract cause harm because they benefit from immune system responses designed to repair the very damage to the intestinal lining caused by the bacteria in the first place.

“The finding is important because it explains how some enteric pathogens can manipulate mammalian cells to get the oxygen they need to breathe,” said Andreas Bäumler, a professor of medical microbiology and immunology at UC Davis School of Medicine and lead author of the study. “It also offers new insight into developing strategies targeting the metabolism of the intestinal lining to prevent the expansion of harmful bacteria in the gut, a situation that is exacerbated by the overuse of antibiotics.”

A healthy large intestine is mostly free of oxygen, and the beneficial microbes residing there thrive in this anaerobic environment. In contrast, enteric pathogens, such as Escherichia coli in humans or Citrobacter rodentium in mice, need oxygen to survive.

Bäumler’s team discovered how these pathogens change the gut environment to favor their own growth.

“Enteric pathogens deploy virulence factors that damage the intestinal lining and cause diarrhea,” Bäumler said. “To repair the damage, the body accelerates the division of epithelial cells that form the intestinal lining, which brings immature cells to the mucosal surface. These new cells contain more oxygen and wind up increasing oxygen levels in the large bowel, creating an environment that allows gut pathogens like E. coli to outcompete the anaerobic-loving resident microbes.”

Bäumler’s research has important implications for developing new treatment strategies that target factors that compromise the intestinal-lining function or bolster microbiota composition to offer either resistance or assistance to invading pathogens.

“The rise of antibiotic-resistant strains of bacteria has become a major public health threat worldwide, Bäumler said. “As more bacterial strains do not respond to the drugs designed to kill them, the advances made in treating infectious diseases over the last 50 years are in jeopardy.”

This year, the Centers for Disease Control and Prevention identified three drug-resistant organisms — Clostridium difficile, Carbapenem enterobacteriaceae and Neisseria gonorrhoeae — as requiring urgent attention, and in May, a report commissioned by the UK government predicted that by 2050 antimicrobial-resistant infections could claim 10 million lives a year and cost up to $100 trillion from the global economy.

Understanding how gut pathogens manipulate the body’s natural defense mechanisms to grab hold and contribute to abnormal states within and beyond the GI tract is a burgeoning area of research at UC Davis. Scientists from schools and colleges across the campus are investigating antibiotic resistance as well as the influence that gut-flora imbalances have on many conditions, including brain health and behavior, obesity, inflammatory bowel disease, irritable bowel syndrome, GI cancers, cardiovascular disease, fatty liver disease, autism, arthritis and asthma.

Story Source:

The above post is reprinted from materials provided by UC Davis Health System.

Media Contact(s)
Carole Gan
Send email
Phone: 916-734-9047

The post Gut pathogens thrive on body’s tissue-repair mechanism appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center

Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center

May 18, 2022
SARS-CoV-2 virus particles

NIAID announces antiviral drug development awards

May 18, 2022

Childhood circumstances and personality traits are associated with loneliness in older age

May 18, 2022

How three mutations work together to spur new SARS-CoV-2 variants

May 18, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirologyVehiclesZoology/Veterinary ScienceVaccinesUrogenital SystemUrbanizationWeaponryVirusVaccineViolence/CriminalsWeather/Storms

Recent Posts

  • Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue
  • Buck Scientist uncovers clues to aging in mitochondria
  • Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center
  • NIAID announces antiviral drug development awards
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....