• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Gut-on-a-chip’ research aims to find personalized treatment for Crohn’s disease

Bioengineer by Bioengineer
May 3, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Thanks to a new $1.8 million grant from The Helmsley Charitable Trust, UT Austin Engineer Hyun Jung Kim will apply his ‘Gut-On-A-Chip’ technology to better understand Crohn’s disease

IMAGE

Credit: Cockrell School of Engineering, The University of Texas at Austin

To model human health and disease, organ-on-a-chip technology mimics the human body’s organ structure, functionality and physiology in a controlled environment. These miniature systems, which serve as accurate models of various organs from the heart and lungs to the gut and the kidneys, can use a patient’s own cells to test drugs and understand disease processes to help determine the right treatment for the right patient.

For 10 years, Hyun Jung Kim, a biomedical engineering assistant professor in the Cockrell School of Engineering at The University of Texas at Austin and assistant professor in the Department of Oncology in UT’s Dell Medical School, has been developing organs-on-chips, specifically examining inflammatory bowel diseases and colorectal cancer. In 2018, Kim led the first study to determine how an intestinal disease develops using human organ-on-a-chip technology, confirming with his “gut inflammation-on-a-chip” system that intestinal barrier disruption is the upstream initiator of gut inflammation.

Now, thanks to a new $1.8 million grant from The Leona M. and Harry B. Helmsley Charitable Trust, Kim will apply his technology to better understand Crohn’s disease — an inflammatory bowel disease that can cause severe adnominal pain, diarrhea, fatigue and malnutrition. He and his research team will develop their Crohn’s disease-on-a-chip system to gain greater insight into what can cause and exacerbate the disease, with the goal of developing new treatments.

“I am humbled by the generosity of the Helmsley Charitable Trust,” Kim said. “I am also excited by the opportunity to help find answers to the root cause of a disease where much more research is needed.”

It is estimated that half of the 3 million Americans living with inflammatory bowel disease have Crohn’s disease. While the cause of the disease is currently unknown, doctors and researchers believe that genetic, immune and environmental factors contribute to disease onset and progression.

“Crohn’s disease is an extraordinarily complicated disease to figure out,” said Declan Fleming, M.D., an associate professor in the Department of Surgery and Perioperative Care at the Dell Medical School who will work with Kim on this project. “We believe this research can lead to a new tool to help us address the complexity of this disease. This could lead to improved treatments or possibly even to reverse the progression of Crohn’s disease altogether.”

Helmsley has made Crohn’s disease one of the top priorities in their focus on developing programs that improve life in the U.S. and around the world. With the number of people around the world affected by Crohn’s disease steadily rising, the organization sees an urgent need to prevent, diagnose early and reconcile the most effective and appropriate treatments for patients.

“There is a pressing need for more effective treatments for Crohn’s disease, and Helmsley is committed to finding more personalized options for patients,” said Garabet Yeretssian, director of Helmsley’s Crohn’s Disease Program. “This innovative ‘gut-on-a-chip’ technology has the potential to uncover triggers of Crohn’s disease, which will lead to improved therapies and ultimately better health outcomes.”

###

About the Helmsley Charitable Trust

The Leona M. and Harry B. Helmsley Charitable Trust aspires to improve lives by supporting exceptional efforts in the U.S. and around the world in health and select place-based initiatives. Since beginning its active grantmaking in 2008, Helmsley has committed more than $2 billion for a wide range of charitable purposes. Helmsley’s Crohn’s Disease Program supports impactful ideas and mobilizes a global community committed to improving the lives of Crohn’s disease patients while pursuing a cure.

Media Contact
John Holden
[email protected]

Original Source

https://www.engr.utexas.edu/news/archive/8801-gut-on-a-chip-research-aims-to-find-personalized-treatment-for-crohn-s-disease

Tags: BiochemistryBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringCell BiologyGastroenterologyMedicine/HealthTechnology/Engineering/Computer Science
Share22Tweet8Share2ShareShareShare2

Related Posts

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Designing DNA for Controlled Charge Transport

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Best Edible Coatings to Preserve Fresh-Cut Apples

Eosinophils Boost Granuloma Defense Against Salmonella

Inverted Perovskite Modules Achieve 99.3% Fill Factor

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.