• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gut microbes protect against neurologic damage from viral infections

Bioengineer by Bioengineer
July 16, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Disruptions in the gut microbiome caused by antibiotics, diet or environmental factors may make the central nervous system more vulnerable to damage from viruses

Gut microbes produce compounds that prime immune cells to destroy harmful viruses in the brain and nervous system, according to a mouse study published today in eLife.

The findings suggest that having a healthy and diverse microbiota is essential for quickly clearing viruses in the nervous system to prevent paralysis and other risks associated with diseases such as multiple sclerosis.

A condition that causes progressive damage to nerve cells, multiple sclerosis has become more common over the past several decades. Viral infections in the brain or spinal cord are thought to trigger this disease. Some scientists believe that changes in the way we eat, increased sanitation or growing antibiotic use may be causing detrimental changes in the helpful bacteria that live within the human body, potentially increasing the risk of multiple sclerosis and other related diseases.

“We wanted to investigate whether gut microbes could alter the immune response to a virus in the central nervous system and whether this affects the amount of damage the virus causes,” says one of the lead authors David Garrett Brown, a graduate research assistant in the Department of Pathology at University of Utah Health, Salt Lake City, US.

To do this, Garrett Brown and co-lead author Ray Soto looked at the effect of Mouse Hepatitis Virus, a virus that infects cells in the mouse nervous system and causes multiple-sclerosis type symptoms, on two groups of mice: some with normal gut microbes and some that were bacteria-free. They found that bacteria-free mice had a weak immune response, were unable to eliminate the virus and developed worsening paralysis, while those with normal gut bacteria were better able to fight off the virus.

Mice treated with antibiotics before the onset of disease were unable to defend themselves. They also had fewer immune cells called microglia, which help flag viruses for destruction by other immune cells.

Next, the team identified compounds produced by gut bacteria that might help the microglia. When they administered these helpful compounds to the bacteria-free mice, they saw that the animals were protected from neurologic damage caused by the virus.

“We’ve shown that gut microbes protect infected mice from paralysis by turning on a specific pathway in central nervous system cells,” explains June Round, Associate Professor in the Department of Pathology at University of Utah Health, and a senior author of the study. “This suggests that signals from microbes are essential to quickly clear viruses in the nervous system and prevent damage from multiple sclerosis-like diseases. Our results emphasise the importance of maintaining a diverse community of bacteria in the gut, and that interventions to restore this community after taking antibiotics may be necessary.”

###

Reference

The paper ‘The gut microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling’ can be freely accessed online at https://doi.org/10.7554/eLife.47117. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contacts

Emily Packer, Senior Press Officer

eLife

[email protected]

+44 1223 855373

Julie Kiefer, Associate Director, Science Communications

University of Utah Health

[email protected]

+1 801-587-1293

About eLife

eLife is a non-profit organisation inspired by research funders and led by scientists. Our mission is to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Microbiology and Infectious Disease, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To read the latest Microbiology and Infectious Disease research published in eLife, visit https://elifesciences.org/subjects/microbiology-infectious-disease.

Media Contact
Emily Packer
[email protected]

Related Journal Article

https://elifesciences.org/for-the-press/d5739827/gut-microbes-protect-against-neurologic-damage-from-viral-infections
http://dx.doi.org/10.7554/eLife.47117

Tags: BacteriologyBiologyMedicine/HealthMicrobiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

September 16, 2025

Shifts in Infective Endocarditis Demographics: 2012-2021

September 16, 2025

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

Pueraria lobata and Puerarin Boost Dopamine Activity

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.