• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Gut bacteria could be responsible for side effect of Parkinson’s drug

Bioengineer by Bioengineer
October 20, 2020
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Groningen

Bacteria in the small intestine can deaminate levodopa, the main drug that is used to treat Parkinson’s disease. Bacterial processing of the unabsorbed fractions of the drug results in a metabolite that reduces gut motility. These findings were described in the journal BMC Biology on 20 October by scientists from the University of Groningen. Since the disease is already associated with constipation, processing of the drug by gut bacteria may worsen gastrointestinal complications.

Patients with Parkinson’s disease are treated with levodopa, which is converted into the neurotransmitter dopamine in the brain. Levodopa is absorbed in the small intestine, although not all of it. Eight to ten per cent travels further to a more distal part of the gut and this percentage increases with age and administered drug dosage. In this distal part of the gut, it may encounter bacterial species such as Clostridium sporogenes, which can deaminate (remove an -NH2 group from) aromatic amino acids.

Intestinal motility

‘Last year, other scientists demonstrated this bacterium’s deamination activity on aromatic amino acids,’ says Sahar El Aidy, assistant professor of Microbiology at the University of Groningen. El Aidy knew that the chemical structure of levodopa is similar to that of the aromatic amino acid tyrosine. ‘This suggested that the bacterium could metabolize levodopa, which may affect the intestinal motility of individuals with Parkinson’s disease.’

Studies by El Aidy and her research team revealed that the bacterium C. sporogenes does indeed break down levodopa into 3-(3,4-dihydroxy phenyl)propionic acid (DHPPA). ‘This process involves four steps, three of which were already known. However, we uncovered the initial step, which is mediated by a transaminase enzyme.’

Coffee

Next, the team investigated whether DHPPA has an effect on motility of the distal small bowel, using an ex vivo model system for gut motility. Gut motility was induced by adding acetylcholine, after which DHPPA was added. ‘Within five minutes, this decreased the motility by 69 percent, rising to 73 percent after ten to fifteen minutes.’ This clearly showed that the levodopa metabolite can reduce gut contractions, which could lead to constipation.

To test whether these findings are relevant to Parkinson’s disease patients, Sebastiaan van Kessel, a PhD student in El Aidy’s research team, tested patients’ stool samples for the presence of DHPPA. ‘Because it is also produced as a breakdown product of coffee and fruits, we compared samples from patients with those from healthy controls with a comparable diet,’ explains El Aidy. The result showed significantly higher DHPPA levels in stool samples of Parkinson’s disease patients who were treated with levodopa. To confirm that this metabolite resulted from the presence and activity of the gut bacterium C. sporogenes, or other gut bacteria capable of anaerobic deamination, bacteria from stool samples were cultured and fed with the precursor of DHPPA. This experiment showed that the bacteria can indeed metabolize levodopa to produce DHPPA.

Inhibitors

All of these results suggest that a residue of the drug levodopa, which is not absorbed early on in the gut, can be metabolized by gut bacteria into DHPPA, which then reduces the motility of the distal gut. As constipation is already one of the symptoms of Parkinson’s disease, it is unfortunate that the drug to treat the symptoms can itself further reduce gut motility due to gut bacterial metabolization. ‘However, now that we know this, it is possible to look for inhibitors of the enzymes in the deamination pathway identified in our study.’

Simple Science Summary

Individuals with Parkinson’s disease are treated with the drug levodopa, which is absorbed in the gut. Microbiologist Sahar El Aidy and her research team from the University of Groningen discovered that some of the levodopa is broken down by bacteria in the gut into a substance (DHPPA) that reduces gut motility. Therefore, the drug that is used to treat Parkinson’s disease can cause constipation, which is unfortunate because constipation is already a symptom of the disease. However, the results of this study could inspire the discovery of inhibitors that stop the breakdown of levodopa into DHPPA.

###

Reference: Sebastiaan P. van Kessel, Hiltje R. de Jong, Simon L. Winkel, Sander S. van Leeuwen, Sieger A. Nelemans, Hjalmar Permentier, Ali Keshavarzian and Sahar El Aidy: Gut bacterial deamination of residual levodopa medication for Parkinson’s disease BMC Biology, 20 October 2020

Media Contact
Rene Fransen
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s12915-020-00876-3

Tags: BiochemistryGastroenterologyMedicine/HealthMicrobiologyneurobiologyParkinson
Share14Tweet9Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiome Transplants Enhance Effectiveness of Cancer Immunotherapy, New Research Shows

Many U.S. Adults’ Heart Ages Outpace Their Actual Age—What About Yours?

Subthalamic Stimulation’s Impact on Parkinson’s Speech

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.