• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

‘Guardian’ protein of brain function

Bioengineer by Bioengineer
February 23, 2015
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mitochondria not only are the cell’s main power producers, they are also the chief cooks and bottle washers.When they get out of whack, the cell can’t function normally. In the brain, mitochondrial failure can set the stage for Parkinson’s disease, Alzheimer’s disease and other forms of neurodegeneration.

guardian

From left, Dan Liebler, Ph.D., Simona Codreanu, Ph.D., BethAnn McLaughlin, Ph.D., and graduate student Amy Palubinsky have discovered a neuroprotection key that could lead to new ways to prevent neurodegenerative disorders. Photo Credit: Ama Winland

Fortunately there is a group of “night watchmen,” proteins that monitor mitochondrial function and sound the alarm if a mitochondrion has failed and needs to be replaced.

One of these proteins, called CHIP, is essential for maintaining mitochondrial health. When CHIP is absent or there is not enough of it, nerve cells cannot recover when, for example, a stroke disrupts their supply of oxygen and glucose.

The critical role of CHIP was reported recently in the journal Antioxidants and Redox Signalingby researchers at Vanderbilt University. Their report has spurred efforts to develop CHIP-enhancing drugs to help speed recovery from strokes and following neurosurgery, and prevent development of neurodegenerative disorders.

“If we can do a better job of maintaining these mitochondria … that’s a very, very powerful tool to have,” said senior author BethAnn McLaughlin, Ph.D., assistant professor of Neurology and Pharmacology.

Among the major findings, the authors uncovered “profound impairments” at both the anatomical and biochemical levels in mice with the CHIP gene deleted, or knocked out.

They’re smaller than their normal littermates, their back legs are weak, and they die young. “They’re 30 days old and they look like they’re 150,” McLaughlin said.

Using a mass spectrometry technique developed by Vanderbilt proteomics pioneer and co-author Dan Liebler, Ph.D., and his colleagues, graduate student Amy Palubinsky confirmed for the first time that CHIP goes to the mitochondria when cells are stressed by lack of oxygen, for example.

She also found that in the absence of CHIP, nerve cells from these animals are much more vulnerable to oxygen and glucose deprivation and are “loaded” with damaged proteins that impair their functioning. Palubinsky is first author on the paper and a Vanderbilt Clinical Neuroscience Scholar.

Palubinsky said the cellular changes seen in the CHIP knockout mice were the same as those her group previously detected in postmortem human samples from people who’d had strokes or “transient ischemic attacks,” which interrupt the brain’s oxygen and glucose supplies.

“That gives us a new model system to look deeper and see what the mechanisms are,” she said.

The Vanderbilt team is now collaborating with medicinal chemist Jason Gestwicki, Ph.D., at the University of California, San Francisco, to test potential CHIP-enhancing drugs he has developed. “We’re moving toward trying that in cells, and in animal models of stroke and Parkinson’s disease,” McLaughlin said.

They also are working with David Charles, M.D., professor of Neurology at Vanderbilt and a pioneer in deep brain stimulation to relieve symptoms of Parkinson’s disease, to develop imaging tests that can pick up changes in the mitochondria before the cells die.

Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    50 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Advances Gastric Cancer Image Analysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Mass Distribution Shapes Diverse Samara Descent Aerodynamics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.