• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Greener spring, warmer air

Bioengineer by Bioengineer
February 21, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Gengsuo Jia


Advanced leaf-out, or early sprouting and opening leaves, is a direct response to climate change. In northern hemisphere, leaf-out has advanced at a rate of 4-5 days per decade on average since 1980s, according to synthesis of over 40 satellite-derived phenology studies across decades and regions. Scientists are curious to know if, in turn, this advancement would affect climate by modulating seasonal cycles of surface energy, water, and carbon budgets.

A new study, published in Nature Climate Change on Feb 17, 2020 showed that advanced leaf-out enhances annual surface warming in the Northern Hemisphere. The study was carried out by researchers at the Institute of Atmospheric Physics with collaborators from Lawrence Berkeley National Laboratory and Nanjing University of Information Science and Technology.

“There are many studies of how vegetation is affected by climate change. However, impact of vegetation change on climate is underemphasized.” said Dr. Xiyan Xu, the first author of the study.

According to the study, advanced leaf-out intensifies water vapor release. “Enhanced water vapor is transported poleward and leads to snow and cloud cover anomalies in northern high latitudes.” said Xu,”That explains why there are unusual temperature hotspots in the north, which is beyond the regions of advanced leaf-out.”

The warming due to earlier leaf-out is amplified in the cold regions, such as Canadian Arctic Archipelago, east and west edges of Siberia, and southeastern Tibetan Plateau, because warming causes snow cover decline.

“Snow reflects solar radiation.” Explained Xu, “When there is less snow on the ground, the reflectivity of Earth’s surface decreases. Then, more incoming solar radiation is absorbed by the surface, and the surface warms, consequently.”

Dr. Gensuo Jia, the corresponding author of the study noted that if the warming continues, leaf-out date will shift further earlier.

“The positive feedbacks loop between climate and spring leaf phenology is likely to amplify warming in the northern high-latitudes.” said Jia, “The impact of vegetation change on climate is profound in spring when snow is melting, with incoming East Asian summer monsoon, and strengthening southerly North American low-level jet.”

Taking these factors into consideration, the study concludes that in early spring, if bare ground is replaced with dense canopy, it would make a great difference to seasonal transition of the climate system.

###

The study was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (CASEarth), the Natural Science Foundation of China, U.S. Department of Energy, Office of Science, Biological and Environmental Research, Regional and Global Climate Modeling Program through the RUBISCO Scientific Focus Area. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User and the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory.

Media Contact
Zheng Lin
[email protected]
86-108-299-5053

Original Source

http://english.iap.cas.cn/RE/202002/t20200220_230071.html

Related Journal Article

http://dx.doi.org/10.1038/s41558-020-0713-4

Tags: AgricultureAtmospheric ScienceBiologyClimate ChangeEarth Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

October 30, 2025
Decoding the Painted Lady Butterfly’s Mitochondrial Genome

Decoding the Painted Lady Butterfly’s Mitochondrial Genome

October 30, 2025

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immunotherapy Plus Radiotherapy in Advanced Lung Cancer

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

Exploring Japan’s Home Medical Care Utilization Gaps

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.