• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Grasshopping robots made possible with new, improved latch control

Bioengineer by Bioengineer
March 2, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

If animals and insects can jump across grass and sand, why can’t robots? Sarah Bergbreiter, Professor of Mechanical Engineering, has found that researchers don’t have to look far to enable this in robots. Existing latch mechanisms that were once thought of as an ‘on’ or ‘off’ switch to release stored energy can also be used to control jump performance across a wide range of terrains.

Jumping robot adapts to compliant environments

Credit: Carnegie Mellon College of Engineering

If animals and insects can jump across grass and sand, why can’t robots? Sarah Bergbreiter, Professor of Mechanical Engineering, has found that researchers don’t have to look far to enable this in robots. Existing latch mechanisms that were once thought of as an ‘on’ or ‘off’ switch to release stored energy can also be used to control jump performance across a wide range of terrains.

“I am interested in how we can build these very functional, very small robots that can move around diverse environments,” Bergbreiter says. “Traditionally, jumping robots are studied on rigid surfaces, so designing a jumper that can function efficiently on soft substrates is a big step for robotics.”

Bergreiter’s team used a mathematical model to illustrate how the latch plays a role in the system’s ability to adapt its jump performance before testing their findings on a robot ‘jumper.’

“We found that the latch can not only mediate energy output but can also mediate energy transfer between the jumper and the environment that it is jumping from.” Bergbreiter explains. “When using a round latch we can delay the jump and allow the robot to take advantage of the substrate’s recoil.”

The team tested their jumper on a tree branch and watched as the branch recoiled before the jumper took off. This proved that the jumper recovered some of the energy initially lost to the tree branch.

Unexpectedly, Bergbreiter’s team found that a sharp (zero radius) latch sometimes outperformed their rounded latch contrary to model predictions. In these instances, the tree branch collided with the robot after take-off, causing an unconventional form of energy recovery from the substrate bump. The bump gave the jumper additional energy enabling it to outperform the well-controlled rounded latch jumper.

“Now that we understand the natural design space, we can build something that takes advantage of the compliance of these soft substrates,” Berbreiter says.

Biologists are equally motivated to understand this space in order to discern how biological organisms, like grasshoppers, are able to control their energy output when jumping through grass.

“It has been nearly impossible to design controlled insect-sized robots because they are launched in just milliseconds. Now, we have more control over whether our robots are jumping up one foot or three. Or we can simply make it jump consistently despite wide variation in substrate. It’s really fascinating that the latch – something that we already need in our robots – can be used to control outputs that we couldn’t have controlled before.”

This research was published in Royal Society in collaboration with researchers at Dickinson College and University of California – Irvine.



Journal

Journal of The Royal Society Interface

DOI

10.1098/rsif.2022.0778

Article Title

Adapting small jumping robots to compliant environments

Article Publication Date

1-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

LMRC

SwRI creates innovative, efficient hydrogen compressor for FCEV refueling stations

March 28, 2023
Researchers

Advanced electrode to help remediation of stubborn new ‘forever chemicals’

March 28, 2023

Marijuana-derived compounds could reverse opioid overdoses

March 28, 2023

Pulsing ultrasound waves could someday remove microplastics from waterways

March 28, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PCORI approves $123 million for research on postpartum care, hypertension management, antibiotic prescribing and a range of conditions

New method for fast, efficient and scalable cloud tomography

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In