• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Graphene controls laser frequency combs in fiber

Bioengineer by Bioengineer
November 11, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Chenye Qin, Kunpeng Jia, Qianyuan Li, Teng Tan, Xiaohan Wang, Yanhong Guo, Shu-Wei Huang, Yuan Liu, Shining Zhu, Zhenda Xie, Yunjiang Rao, & Baicheng Yao

The development of laser frequency combs has revolutionized optical communication, photonic sensing, precision spectroscopy, and astronomical observation. Stable frequency combs could be achieved via mode locking in rare-earth doped fiber lasers, generating Kerr solitons in parametric oscillators, or opto-electrically modulating lithium niobate microresonators with strong second-order nonlinearity. For many out-of-lab applications, people desire a compact comb devices with multiple advances, such as all-in-fiber integration, low driven power but high efficiency, full stabilization, and diverse comb outputs with fast and convenient tunability.

In a recently published paper in Light: Science & Applications, scientists from the University of Electronic Science and Technology of China, Nanjing University, Hunan University and University of Colorado, Bouder, demonstrated a graphene heterogeneous fiber micro resonator. Leveraging the electrical tunability of the graphene semiconductor incorporated in a fiber F-P microcavity, they demonstrate dissipative soliton mode-locked laser combs generation, and the capability to control comb dynamics in situ. Taking advantage of the tunneling diode effect, the researchers realize a remarkable graphene Dirac Fermion tuning from 0 to 0.45 eV. This leads to modulation depth controllable in range of 0.1% to 1.4 %. In consequence, mode locked laser frequency combs with unprecedentedly dynamic tunability are demonstrated, in both fundamental and harmonic states. Moreover, the graphene integrated microlaser device provides a powerful way to opto-electrically stabilize the comb lines after 1/2 octave supercontinuum amplification, the phase noise reaches the instrument-limited floor of -130 dBc/Hz at 10 kHz offset, suggesting timing jitter less than 2.5×10-15 s per roundtrip. Such realization of the microcomb’s dynamic control and stabilization, in a graphene heterogeneous fiber microcavity, would provide a new platform at the interface of single atomic layer optoelectronics and ultrafast photonics, lighting versatile applications for arbitrary waveform generation, fiber communication, signal processing, and spectroscopic metrology.

###

Media Contact
Baicheng Yao
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00419-z

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

East Palestine Train Derailment: Chemical Hazard Insights

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Enhancing Patient Care with Continuous Medical Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.