• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 24, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

GRAPES-3 muon telescope discovers record 1.3 gigavolt potential in a thundercloud

Bioengineer by Bioengineer
March 20, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pranay Godawat/ GRAPES-3 experiment

Thunderstorms are a spectacular manifestation of electrical discharges of thunderclouds, and have fascinated humans through millennia. There is a dark side of thunderstorms as thousands of lives are lost every year worldwide, making them a leading cause of death by natural disasters. The technique of muon imaging developed by GRAPES-3 collaboration showed that huge voltages develop in supercharged thunderclouds. The voltage produced by a thundercloud on 1 December 2014 in Ooty measured 1,300,000,000 Volts (1.3 GV) across its height, which is 10 times larger than the previous record voltage of 0.13 GV. This verifies the 90-year-old prediction of 1,000,000,000 Volts (1 GV) by C.T.R. Wilson. Such massive voltages are essential for the production of high-energy (100 MeV) gamma rays in the Terrestrial Gamma Ray Flashes (TGFs) emanating from thunderstorms, first discovered 25 years ago.

The GRAPES-3 muon telescope is a sensitive instrument operated by the Cosmic Ray Laboratory of the Tata Institute of Fundamental Research in Udhagamandalam (Ooty) for a collaboration of several institutes and universities from Japan and India. Embedded within an array of plastic scintillator detectors that together constitute GRAPES-3, the experiment is designed to study muons produced by cosmic rays from outer space. The muon intensity changes due to the presence of electric potential in thunderclouds. Therefore, this change in the muon intensity measured by the GRAPES-3 muon telescope can be exploited to estimate the electric potential in the thundercloud.

The data collected by the GRAPES-3 muon telescope show that this particular thunderstorm was a massive (400 sq. km.) cloud, storing about a trillion Joules of energy. Moving at a speed of 60 km per hour at an altitude of 11.4 km — where passenger jets fly — such thunderstorms could pose a serious threat to passenger safety. The >2 GW power supplied by the strong thermal currents sustaining this thunderstorm is comparable to the existing single biggest nuclear reactors or hydroelectric- or thermal power generators. If only this huge energy could be harnessed in some way, it would be sufficient to power a large metro like New York, London or Mumbai for its duration of 18 minutes.

###

Media Contact
Sunil K. Gupta
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.122.105101

Tags: Chemistry/Physics/Materials Sciences
Share14Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Facilitators in Dementia Pain App Use

Graphene Solar Sails: Innovative Auger Mechanism for Halo

FRAX and T-Score: New Insights on Cardiovascular Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.