• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Grabbing atoms

Bioengineer by Bioengineer
February 20, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Otago physicists grab individual atoms in ground-breaking experiment

IMAGE

Credit: University of Otago


In a first for quantum physics, University of Otago researchers have “held” individual atoms in place and observed previously unseen complex atomic interactions.

A myriad of equipment including lasers, mirrors, a vacuum chamber, and microscopes assembled in Otago’s Department of Physics, plus a lot of time, energy, and expertise, have provided the ingredients to investigate this quantum process, which until now was only understood through statistical averaging from experiments involving large numbers of atoms.

The experiment improves on current knowledge by offering a previously unseen view into the microscopic world, surprising researchers with the results.

“Our method involves the individual trapping and cooling of three atoms to a temperature of about a millionth of a Kelvin using highly focused laser beams in a hyper-evacuated (vacuum) chamber, around the size of a toaster. We slowly combine the traps containing the atoms to produce controlled interactions that we measure,” says Associate Professor Mikkel F. Andersen of Otago’s Department of Physics.

When the three atoms approach each other, two form a molecule, and all receive a kick from the energy released in the process. A microscope camera allows the process to be magnified and viewed.

“Two atoms alone can’t form a molecule, it takes at least three to do chemistry. Our work is the first time this basic process has been studied in isolation, and it turns out that it gave several surprising results that were not expected from previous measurement in large clouds of atoms,” says Postdoctoral Researcher Marvin Weyland, who spearheaded the experiment.

For example, the researchers were able to see the exact outcome of individual processes, and observed a new process where two of the atoms leave the experiment together. Until now, this level of detail has been impossible to observe in experiments with many atoms.

“By working at this molecular level, we now know more about how atoms collide and react with one another. With development, this technique could provide a way to build and control single molecules of particular chemicals,” Weyland adds.

Associate Professor Andersen admits the technique and level of detail can be difficult to comprehend to those outside the world of quantum physics, however he believes the applications of this science will be useful in development of future quantum technologies that might impact society as much as earlier quantum technologies that enabled modern computers and the Internet.

“Research on being able to build on a smaller and smaller scale has powered much of the technological development over the past decades. For example, it is the sole reason that todays cellphones have more computing power than the supercomputers of the 1980s. Our research tries to pave the way for being able to build at the very smallest scale possible, namely the atomic scale, and I am thrilled to see how our discoveries will influence technological advancements in the future” Associate Professor Andersen says.

The experiment findings showed that it took much longer than expected to form a molecule compared with other experiments and theoretical calculations, which currently are insufficient to explain this phenomenon. While the researchers suggest mechanisms which may explain the discrepancy, they highlight a need for further theoretical developments in this area of experimental quantum mechanics.

This completely New Zealand based research was primarily carried out by members of the University of Otago’s Department of Physics, with assistance from theoretical physicists at Massey University.

###

The research which was supported by the Marsden Fund, has been published in the international journal Physical Review Letters, at the following link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.073401

For more information contact:

Associate Professor Mikkel Andersen

Department of Physics

University of Otago

Tel 03 4797805

Email [email protected]

Media Contact
Mark Hathaway
[email protected]

Original Source

https://www.otago.ac.nz/news/news/otago732837.html

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsNuclear PhysicsOpticsParticle PhysicsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Brain Chemistry Through Humanity’s Evolutionary Journey

Mapping Brain Chemistry Through Humanity’s Evolutionary Journey

August 4, 2025
Pan Feng’s Team Pioneers Inverse Design of Catalytic Materials Using Topological AI

Pan Feng’s Team Pioneers Inverse Design of Catalytic Materials Using Topological AI

August 4, 2025

DGIST Advances Ultrasound Wireless Charging for Implantable Medical Devices

August 4, 2025

Advancing Clinical Gait Analysis with Generative AI and Musculoskeletal Simulation

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    68 shares
    Share 27 Tweet 17
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Author Correction: Breakthroughs in Ultrafast Photonics Integration

Mapping Alveolar Cell Regeneration in Pulmonary Fibrosis

Neonatal HIE and Acute Kidney Injury Risks Evaluated

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.