• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Good vibrations for new energy

Bioengineer by Bioengineer
October 21, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nanogenerator ‘scavenges’ power from their surroundings

IMAGE

Credit: Flinders University

Imagine a mobile phone charger that doesn’t need a wireless or mains power source. Or a pacemaker with inbuilt organic energy sources within the human body.

Australian researchers led by Flinders University are picking up the challenge of ‘scavenging’ invisible power from low-frequency vibrations in the surrounding environment, including wind, air or even contact-separation energy (static electricity).

“These so-called triboelectric nanogenerators (or ‘TENGs’) can be made at low cost in different configurations, making them suitable for driving small electronics such as personal electronics (mobile phones), biomechanics devices (pacemakers), sensors (temperature/pressure/chemical sensors), and more,” says Professor Youhong Tang, from Flinders University’s College of Science and Engineering.

Further research aims to further develop this renewable form of energy harvesting by designing simple fabrication from cheap and sustainable materials, with high efficiency.

“They can use non-invasive materials, so could one day be used for implantable and wearable energy harvesting aims,” says PhD candidate Mohammad Khorsand, co-lead author on recent papers in international journal Nano Energy.

The latest paper uses AI-enhanced mathematical modelling to compare the function of the number of segments, rotational speed and tribo-surface spacing of an advanced TENG prototype to optimise the storage and performance.

The researchers, with colleagues at the University of Technology Sydney and elsewhere, are working to improve power generation of TENGs and store the generated power on supercapacitor or battery.

“We have been able to effectively harvest power from sliding movement and rotary motion which are abundantly available in our living environment,” says Professor Tang.

###

The latest paper, Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions (2020) by Mohammad Khorsand, Javad Tavakoli (University of Technology Sydney), Haowen Guan and Youhong Tang has been published in Nano Energy (Elsevier) DOI: 10.1016/j.nanoen.2020.104993

Also see 2019 paper Simulation of high-output and lightweight sliding-mode triboelectric nanogenerators DOI: 10.1016/j.nanoen.2019.104115

Key points:

  • The first generation of triboelectric nanogenerators (TENGs) was fabricated at Georgia Institute of Technology in the US about 10 years ago.
  • Research at Flinders University is aiming design cost effective and high-efficient sliding and rotary TENGs for further development and possible commercialisation.
  • This research on the next generation of TENG is using AI and simulation modelling to reduce the cost of repeating the experiment for various conditions.
  • The research team is focusing on numerically predicting the outputs of TENGs by measuring their voltage, current, power and energy under various electric specifications and geometries of dielectric films.

Media Contact
Professor Youhong Tang
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2020.104993

Tags: Biomedical/Environmental/Chemical EngineeringElectrical Engineering/ElectronicsNanotechnology/MicromachinesResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Cardiology with Engineered Immune Theranostics

Advanced GAN-LSTM Method Enhances Fake Face Detection

Preventing Staph in Neonates: Lessons from GBS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.