• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Global change ecologist leads NASA satellite study of rapid greening across Arctic tundra

Bioengineer by Bioengineer
September 22, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

International team of researchers finds the region has become greener as warmer air and soil temperatures lead to increased plant growth

IMAGE

Credit: Logan Berner, Northern Arizona University

As Arctic summers warm, Earth’s northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a team of researchers finds the region has become greener as warmer air and soil temperatures lead to increased plant growth.

“The Arctic tundra is one of the coldest biomes on Earth, and it’s also one of the most rapidly warming,” said Logan Berner, assistant research professor with Northern Arizona University’s School of Informatics, Computing, and Cyber Systems (SICCS), who led the research in collaboration with scientists at eight other institutions in the U.S., Canada, Finland and the United Kingdom. “This Arctic greening we see is really a bellwether of global climatic change – it’s this biome-scale response to rising air temperatures.”

The study, published this week in Nature Communications, is the first to measure vegetation changes across the Arctic tundra, from Alaska and Canada to Siberia, using satellite data from Landsat, a joint mission of NASA and the U.S. Geological Survey. Scientists use Landsat data to determine how much actively growing vegetation is on the ground – greening can represent plants growing more, becoming denser or shrubs encroaching on typical tundra grasses and moss.

When the tundra vegetation changes, it impacts not only the wildlife that depend on certain plants, but also the people who live in the region and depend on local ecosystems for food. While active plants will absorb more carbon from the atmosphere, the warming temperatures are also thawing permafrost, releasing greenhouse gasses. The research is part NASA’s Arctic Boreal Vulnerability Experiment (ABoVE), which aims to better understand how ecosystems are responding in these warming environments and its broader implications.

Berner and his colleagues, including SICCS faculty Patrick Jantz and Scott Goetz along with postdoctoral researcher Richard Massey and research associate Patrick Burns, used the Landsat data and additional calculations to estimate the peak greenness for a given year for each of 50,000 randomly selected sites across the tundra. Between 1985 and 2016, about 38 percent of the tundra sites across Alaska, Canada and western Eurasia showed greening. Only 3 percent showed the opposite browning effect, which would mean fewer actively growing plants.

To include eastern Eurasian sites, the team compared data starting in 2000, which was when Landsat satellites began collecting regular images of that region. With this global view, 22 percent of sites greened between 2000 and 2016, while 4 percent browned.

“Whether it’s since 1985 or 2000, we see this greening of the Arctic evident in the Landsat record,” Berner said. “And we see this biome-scale greening over the same period as we see really rapid increases in summer air temperatures.”

The researchers compared these greening patterns with other factors and found that they are also associated with higher soil temperatures and higher soil moisture. They confirmed these findings with plant growth measurements from field sites around the Arctic.

“Landsat is key is for these kinds of measurements because it gathers data on a much finer scale than what was previously used,” said NAU professor Goetz, who contributed to the study and leads the ABoVE science team. That allows the researchers to investigate what is driving the changes to the tundra. “There’s a lot of microscale variability in the Arctic, so it’s important to work at finer resolution while also having a long data record,” Goetz said. “That’s why Landsat’s so valuable.”

###

About Northern Arizona University

Northern Arizona University is a higher-research institution providing exceptional educational opportunities in Arizona and beyond. NAU delivers a student-centered experience to its 31,000 students in Flagstaff, statewide and online through rigorous academic programs in a supportive, inclusive and diverse environment. Dedicated, world-renowned faculty help ensure students achieve academic excellence, experience personal growth, have meaningful research opportunities and are positioned for personal and professional success.

Media Contact
Logan Berner
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-18479-5

Tags: Climate ChangeClimate ScienceEarth ScienceEcology/EnvironmentPlant SciencesSatellite Missions/ShuttlesTemperature-Dependent Phenomena
Share13Tweet8Share2ShareShareShare2

Related Posts

Unraveling HLB Tolerance Mechanisms in Citrus Hybrids

August 31, 2025

Assessing Amphibian Range Shifts Amid Climate Change

August 31, 2025

New FGF3 Mutation Linked to LAMM Syndrome

August 31, 2025

Erzhi Pills Shield ARPE-19 Cells from Oxidative Damage

August 31, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Enhanced Driveline Management on LVAD Outcomes

GPER: Key Role in Metabolism and Disease Management

Scaling Evidence-Based Health Interventions in Africa: A Dialogue

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.