• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

Bioengineer by Bioengineer
March 25, 2023
in Chemistry
Reading Time: 3 mins read
0
Transitions of low and high-entropy metal tellurides.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have uncovered clues to understanding the behavior of high-entropy metal telluride superconductors. They found that features typical of glasses, solids with an amorphous structure, and “blurry” electronic states, induced by disorder in the atomic structure, were involved in the unique pressure dependence of the critical temperature where superconductivity arises. This might point to coupling between electrons and vibrations in the atomic lattice, giving rise to exotic superconductivity mechanisms.

Transitions of low and high-entropy metal tellurides.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have uncovered clues to understanding the behavior of high-entropy metal telluride superconductors. They found that features typical of glasses, solids with an amorphous structure, and “blurry” electronic states, induced by disorder in the atomic structure, were involved in the unique pressure dependence of the critical temperature where superconductivity arises. This might point to coupling between electrons and vibrations in the atomic lattice, giving rise to exotic superconductivity mechanisms.

 

Entropy is a measure of disorder. The more ways there are of arranging things in a system, whether it be gas atoms in a box, people in a queue, parts in a mixture, or building blocks along a polymer chain, the higher the entropy is. The same applies to a unique class of alloys known as high-entropy alloys (HEAs). In a material like metal telluride, tellurium and metal ions are usually arranged in an ordered, crystalline pattern, in a low-entropy configuration. However, if the single type of metal is replaced with a blend of five different metals, there is a whole range of ways in which the metal sites can be filled. This leads to a high-entropy (or high entropy-of-mixing) state, with unique physical properties.

A team led by Associate Professor Yoshikazu Mizuguchi of Tokyo Metropolitan University have been studying the superconductivity of high-entropy metal telluride. At high pressures, the critical temperature (Tc) below which superconductivity arises is known to decrease with higher pressure in more conventional materials. However, recent research found that metal telluride high-entropy alloys with a large number of metals had a particularly robust superconductivity at high pressure, with a Tc that didn’t decrease much as the pressure was ramped up further.

Now, they have begun to figure out why by measuring and simulating the atomic structure, as well as what energies the electrons like to take (the band structure). It turns out that the disorder introduced by the range of metals that can sit in the metal sites has real implications for its properties. For example, the ways in which the atoms in the crystalline lattice can vibrate in a normal crystal are often confined to specific frequencies, like different modes of vibration on a guitar string. But thanks to the disorder in how the metal sites are filled, a simulation of the density of states, a map of the frequencies at which the atomic structure likes to vibrate, showed an extremely broadened structure, and not a series of peaks. This is typical of glasses, solids with a disordered structure, but not of crystalline materials like metal telluride. A similar broadening was found in the band structure, where the energies of states in which electrons can lie were blurred out. This was also found to correlate with real, experimentally measured local structural disorder using X-ray diffraction techniques.

Interestingly, it was found that this glassiness and blurriness only become prominent when the metal telluride structure had a high entropy. This also correlated with the critical temperature no longer dropping with pressure. The team believe there might be a unique coupling between the behavior of electrons in the material, the vibrational behavior of the atomic lattice, and the superconducting properties. They now have their sights set on experiments with single crystals of high-entropy telluride, continuing the search for exotic mechanisms that might explain how superconductivity works.

This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) (No. 21H00151, 20H01874, 20H05619), the JST-ERATO Program (Grant Number JPMJER2201), and the Tokyo Metropolitan Government Advanced Research (No. H31-1).



Journal

Materials Today Physics

DOI

10.1016/j.mtphys.2023.101019

Article Title

Glassy atomic vibrations and blurry electronic structures created by local structural disorders in high-entropy metal telluride superconductors

Article Publication Date

15-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

UZH Device Pioneers Search for Light Dark Matter

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025
Unlocking Insulators: How Light Pulses Set Electrons Free

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025

DGIST Validates Clinical Feasibility of Simultaneous Cell Isolation Technology to Enhance Cancer Diagnostic Accuracy

September 8, 2025

From Layered Transition Metal Oxide to 2D Material: Unveiling the Breakthrough Discovery of 2H-NbO₂

September 8, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.