• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Giant teenage shark from the Dinosaur-era

Bioengineer by Bioengineer
April 23, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fossil vertebrae give insights into growth and extinction of an enigmatic shark group

IMAGE

Credit: © Patrick L. Jambura

In 1996, palaeontologists found skeletal remains of a giant shark at the northern coast of Spain, near the city Santander. Here, the coast comprises meter high limestone walls that were deposited during the Cretaceous period, around 85 million years ago, when dinosaurs still roamed the world. Scientists from the University of Vienna examined this material now and were able to assign the remains to the extinct shark family, Ptychodontidae, a group that was very specious and successful in the Cretaceous but suddenly vanished mysteriously before the infamous end-Cretaceous extinction event.

Shark vertebrae are rare in the fossil record, but precious

Ptychodontid sharks are mainly known from their teeth, which are flattened and allowed them to crush hard-shelled prey, like bivalves or ammonites, similar to some of today’s ray species. However, the find of Spain consists only of parts of the vertebral column and placoid scales (teeth-like scales), which are much rarer than teeth in the fossil record.

In contrast to teeth, shark vertebrae bear important information about a species’ life history, such as size, growth and age, which are saved as growth rings inside the vertebra, like in the stem of trees. Statistical methods and the comparison with extant species, allowed the scientists to decode these data and reconstruct the ecology of this enigmatic shark group.

Ptychodontid sharks grew big and old

“Based on the model, we calculated a size of 4-7m and an age of 30 years for the examined shark. Astonishing about this data is the fact that this shark was not yet mature when it died despite its rather old age.” states Patrick L. Jambura, lead author of the study. Sharks follow an asymptotic growth curve, meaning that they grow constantly until maturation and after that, the growth curve flattens resulting from a reduced growth rate. “However, this shark doesn’t show any signs of flattenings or inflections in the growth profile, meaning that it was not mature, a teenager if you want. This suggests that these sharks even grew much larger (and older)!”

The study suggests that ptychodontid sharks grew very slow, matured very late, but also showed high longevity and reached enormous body sizes. “This might have been a main contributor to their success, but also, eventually, demise.”

Do modern sharks face a similar fate?

Many living sharks, like the whale shark or the great white shark, show very similar life history traits, a combination of low recruitment and late maturation, which makes them vulnerable to anthropogenic threats, like overfishing and pollution.

“It might be the case that similar to today’s sharks, ptychodontid sharks faced changes in their environment, to which they could not adapt quick enough and, ultimately, led to their demise before even dinosaurs went extinct. However, unlike in the Cretaceous period, it is up to us now, to prevent this from happening to modern sharks again and to save the last survivors of this ancient and charismatic group of fishes!”

###

Publication in PLOS ONE

Patrick L. Jambura & Jürgen Kriwet (2020) Articulated remains of the extinct shark, Ptychodus (Elasmobranchii, Ptychodontidae) from the Upper Cretaceous of Spain provide insights into gigantism, growth rate and life history of ptychodontid sharks. In PLOS ONE

DOI: 10.1371/journal.pone.0231544

Media Contact
Patrick L. Jambura
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0231544

Tags: ArchaeologyBiologyEarth ScienceEvolutionPaleontology
Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Triazophos Effects on Immune Responses in Snakehead Fish

September 5, 2025
Unraveling Trebouxiophyceae Algae: Evolutionary and Ecological Insights

Unraveling Trebouxiophyceae Algae: Evolutionary and Ecological Insights

September 5, 2025

Boosting Quasi-2D Perovskite Solar Cell Efficiency and Stability with Dicyandiamide Interface Engineering

September 5, 2025

Nitrogen Boosts Wheat Recovery via TaSnRK2.10 Pathway

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

MD Anderson and Phoenix SENOLYTIX Forge Strategic Cross-Licensing Partnership to Advance Inducible Switch Technologies in Cell and Gene Therapies

Harnessing Good Vibrations: A New Era in Assisted Reproductive Technology

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.