• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Getting yeast to make artificial sweets

Bioengineer by Bioengineer
December 19, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The holiday season can be a time of excess, but low- or no-calorie sweeteners could help merry-makers stay trim. Stevia is a zero-calorie sweetener that is sometimes called “natural” because it is extracted from the leaves of a South American plant. Now, a report in ACS Synthetic Biology describes a way to prepare large quantities of stevia using yeast, which would cut out the plant middleman and could lead to a better tasting product.

In the stevia plant, a series of enzymes turn glucose into molecules called glucosides that retain sugary sweetness without the calories. The plant produces a variety of glucosides, but some have a bitter aftertaste. Others are minor glucosides in the plant, but because of their pleasant properties, they could be developed into next-generation sweeteners. So, to make a sweeter sweetener and to make lots of it, Vincent J.J. Martin and colleagues wanted to take the glucoside-making machinery out of the plant and into yeast, where they could more easily tweak enzymes to optimize stevia production.

The researchers created a platform for testing enzyme combinations to see which mixture produced the highest yield of stevia molecules in yeast. They started with the enzymes from the stevia plant, but also used some related enzymes from a plant in the mustard family, which improved yield. The authors say that their results represent a step toward the commercial production of a new generation of better-tasting no-calorie sweeteners.

###

The authors acknowledge funding from Concordia University, Canada Foundation for Innovation and Evolva.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455
http://dx.doi.org/10.1021/acssynbio.8b00470

Tags: Agricultural Production/EconomicsBacteriologyChemistry/Physics/Materials SciencesForestryGenesPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Critically Endangered Plains-Wanderer Discovered in Uncharted Habitat

August 14, 2025
PLOS Biology Joins MetaROR as Official Partner Journal

PLOS Biology Joins MetaROR as Official Partner Journal

August 14, 2025

Aspergillus Virus Boosts Fungal Virulence in Mammals

August 14, 2025

Lentinus edodes Polysaccharides Transform Noodle Texture and Digestion

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MIT Researchers Harness Generative AI to Develop Compounds Targeting Drug-Resistant Bacteria

Frailty Increases Risk of Respiratory Complications and Mortality Among Smokers

State-by-State Insights: Public Awareness of HPV, the HPV Vaccine, and Cancer Links

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.