• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 18, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Georgia Tech researchers develop wireless implantable vascular monitoring system

Bioengineer by Bioengineer
May 12, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Vascular diseases are public enemy number one: the leading killers worldwide, accounting for nearly a third of all human deaths on the planet.

Woon-Hong Yeo with device

Credit: Georgia Tech Photo

Vascular diseases are public enemy number one: the leading killers worldwide, accounting for nearly a third of all human deaths on the planet.

Continuous monitoring of hemodynamics – blood flow through the vascular system – can improve treatments and patient outcomes. But deadly conditions like hypertension and atherosclerosis occur in long and twisting vascular system with arteries of varying diameter and curvature, and existing clinical devices are limited by their bulk, rigidity, and utility.

Georgia Institute of Technology researcher Woon-Hong Yeo and his collaborators are trying to improve the odds for patients with development of an implantable soft electronic monitoring system. Their new device, consisting of a smart stent and printed soft sensors, is capable of wireless real-time monitoring of hemodynamics without batteries or circuits.

“This electronic system is designed to wirelessly deliver hemodynamic data, including arterial pressure, pulse, and flow, to an external data acquisition system, and it is super small and thin, which is why we can use a catheter to deliver it, anywhere inside the body,” said Yeo, whose team released its study this week in the journal Science Advances.

Yeo added, smiling, “It’s like a stent with multiple tricks up its sleeve.”

For example, when this device is installed in a patient with atherosclerosis, in addition to expanding and preventing the artery from narrowing, like a traditional stent, restoring normal blood flow, it will also provide a constant flow of data.

“Now, once you have deployed a stent, you’re not sure if the problem was resolved and patients may come back with the same issue,” Yeo said. “It can be a defect of the stent, or an issue with stent deployment, or perhaps a problem with the patient’s blood flow.”

And the current standard way to monitor all of that is with an angiogram. That can be expensive and in rare instances, particularly with patients also struggling with diabetes, the dyes and radiation used in angiogram imaging can cause cancer. Yeo’s system seeks to circumvent the need for an angiogram or other imaging requirements.

His wireless smart stent platform, integrated with soft sensors, is operated by inductive coupling to offer wireless real-time monitoring that can detect a wide range of vascular conditions. Inductive coupling uses magnetic fields for wireless energy transfer. It’s similar to what’s happening when you use a wireless charger for your phone, smartwatch, or other devices – they are gaining energy from the magnetic field created by the charger.

“Basically, you can put this sensor system anywhere inside the body,” Yeo explained. “The other thing about this technology platform is, in addition to being an implantable sensor system, it can be used as a wearable system. Think about a smartwatch and how much of its bulk is taken up by circuits or batteries. If you remove all of that, you have a device that is thinner than a typical Band-Aid, an almost invisible health monitor that you can wear anywhere.”

That’s the long-range goal, anyway. So far, they’ve tested their wireless implantable system on animal models. However, there is still plenty of work to do. And Yeo also has the backing of the National Science Foundation to advance the technology. He recently received a 3-year, $400,000 grant from NSF focused on his printed nanomembrane sensors and bioelectronics for wireless and continuous monitoring of vascular health.

“We believe that the mechanical, material, and electrical design principles we develop, and the engineering and biosensing framework that results from this work, will advance the field of implantable electronics and biomedical systems,” Yeo said. “And the insights and knowledge we gain will be applicable for other physiological processes and challenges in biomedical science and engineering.”

 

CITATION: Robert Herbert, Hyo-Ryoung Lim, Bruno Rigo, Woon-Hong Yeo. “Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics.” Science Advances (May 2022)

DOI: 10.1126/sciadv.abm1175

 

COMPETING INTERESTS: Hyo-Ryoung and Yeo are the inventors for a pending U.S. patent application related to the work described here. The authors declare that they have no other competing interests.

FUNDING: American Heart Association (grant 19IPLOI34760577), National Institutes of Health (NIH R03EB028928).



Journal

Science Advances

DOI

10.1126/sciadv.abm1175

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics

Article Publication Date

11-May-2022

COI Statement

R.H. and W.-H.Y. are the inventors for a pending U.S. patent application (no. 63/085,652) related to the work described here. The authors declare that they have no other competing interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

Schematic illustration of common CLC superstructures and opposite-chirality-coexisted superstructures.

Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures

May 18, 2022
Derek T. Anderson and Matt Maschmann

How to build an ‘explainable AI’ framework to speed up the innovation process

May 17, 2022

SPIE-CLP journal Advanced Photonics announces annual best papers recognition

May 17, 2022

Meteorological mechanisms behind severe drought in southwestern China during spring 2021 differ from similar historical events

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsUrbanizationVaccinesVirusWeaponryUrogenital SystemVaccineZoology/Veterinary ScienceViolence/CriminalsVirologyUniversity of WashingtonVehicles

Recent Posts

  • Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures
  • Reliable diagnostics at the tip of your finger
  • Seafloor animal cued to settle, transformed by a bacterial compound
  • Tooth unlocks mystery of Denisovans in Asia
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....